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ABSTRACT

Commonsense knowledge has long been recognized as an inevitable source of infor-

mation for natural language understanding. In this research, I focus on one specific type

of commonsense knowledge that people use in everyday living: “functional knowledge.”

People go to different places for a common set of goals: people go to schools to study, go

to stores to buy clothing, and go to restaurants to eat. Comparably, people create and use

physical objects for different purposes: knives are for cutting, cars are for transportation,

and phones are for communication. I refer to the goals people go to a place to achieve or

the purpose people use an object for as “prototypical functions” of locations or objects.

People often infer a richer meaning for sentences than what they “explicitly” state. I

argue that the commonsense knowledge of prototypical functions is essential for natural

language understanding systems to “read between the lines” and make the same types of

inferences that humans do.

I will first introduce a semi-supervised learning technique to learn the prototypical

functions of locations from large corpora and a transfer learning method with pretrained

language models to learn the prototypical functions of human-made physical objects. Af-

ter that, I will demonstrate how to use this prior knowledge of functions in downstream

applications. Our human annotations results show that when an object is being used in a

sentence, we can predict with high confidence that the object is used for its prototypical

function. However, sentences often mention objects when they are not used at all. So

I design an automatic system to recognize the true use of an object, in order to enable

prototypical function inferences, especially when the action is implicit. I also show the

importance of functional knowledge for computer vision. Situation recognition is a task

to recognize the main activity depicted in a static image. I build a transformer-based

model that incorporates functional knowledge of objects in the image to better identify

the depicted activity for this task.
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CHAPTER 1

INTRODUCTION

Commonsense knowledge plays an important role in our daily life. It has been widely

acknowledged as understandings of the everyday world and has long been recognized as

an inevitable source of information that a system should use for natural language under-

standing. A well-known example illustrating the importance of commonsense knowledge

came from the Winograd Schema Challenge [85]:

The city councilmen refused the demonstrators a permit

because they [feared/advocated] violence.

The choices of feared and advocated demand answering the underlying question “Does the

pronoun ’they’ refer to the city councilmen or the demonstrators?” The correct answer is

obvious to the human readers due to our commonsense but proves difficult for automatic

natural language processing systems.

Commonsense knowledge differs from encyclopedic knowledge, which is more factual

and typically well defined in a textbook. Instead, commonsense is multifarious and “ev-

erything everywhere”. For example, there is taxonomy commonsense knowledge so we

know an apple is a fruit and a dog is an animal; there is temporal commonsense knowledge in

our minds that a football game takes longer than a UFC fight, as well as a toddler is too young to

get a Ph.D. degree; there is spatial commonsense knowledge that a desk is often accompanied

by chairs so that when we see a still picture where a piece of wood is peeking above a table,

we would know that it is part of a chair, rather than a random plank [40].

In this work, I will focus on one specific type of commonsense knowledge that peo-

ple use in everyday living — functional knowledge. Specifically, I consider functional

knowledge associated with two types of entities, locations and human-made physical objects.
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1.1 Motivation
If you came across your friend who told you that he has just been to a restaurant, you

could naturally ask “how was the food” because you assume that people go to restaurant

to eat, unless your friend is a cook. We observe and hypothesize that it is a common fact

that people go to different places to accomplish goals. People go to stores to buy clothing,

go to libraries to study, and go to the doctor for medical services. For many places, people

typically go there for a common set of reasons, which I will refer to as the prototypical

function (goal activities) of a location.

The second type of entity, human-made physical objects, refer to those concrete things

created by humans, as opposed to 1) things that occur naturally such as a rock, a river, or

2) abstract terms or ideas such as Marxism or the theory of relativity. A book is a human-

made physical object (a paragraph is not), a desk is a human-made physical object, and

so is a car. I intentionally focus on human-made objects as opposed to naturally occurring

objects because they were typically created for a reason (note how you know what “they”

refers to!), i.e., why people need this object – the “purpose”. For example, people use a

knife for cutting, pick up a book for reading, etc. Limiting the scope to physical objects

is also because abstract creations by human beings often fall into the axis of specialized

knowledge, which is opposite to the commonsense knowledge about everyday living. I

refer to the most typical way people use a physical object as its prototypical function.

I am interested in the purpose of locations and objects as it is one type of commonsense

knowledge that can be easily overlooked yet plays an important role in our daily language

understanding. People may not realize how many assumptions they unconsciously make

based on the common purpose of the objects when they deal with textual or speech infor-

mation. Imagine a reading scenario, when you read

John put the chicken in the oven.

You would instantly know that John is cooking because you know ovens are used for

heating food and chicken is edible. You would probably assume it is before lunch or dinner

time and John is in the kitchen, where the oven is located. You may even know that the

chicken will stay in the oven for an hour or so, neither one minute nor multiple days.

None of this information is explicitly expressed in this simple sentence. However, humans
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are able to make these assumptions without any difficulty because our commonsense

knowledge of chicken, oven and the unmentioned kitchen is unconsciously triggered.

This thesis was also motivated by observing sentences and realizing that we can infer

the “true” meaning for these sentences beyond what they “explicitly” state. Oftentimes,

true actions are left implicit in natural language. In many cases, these actions do not need

to be explicitly stated because they can be easily inferred by people using our common-

sense knowledge. Consider the following sentences:

(a) She went to the kitchen and got chicken.

(b) She went to the supermarket and got chicken.

(c) She went to the restaurant and got chicken.

Sentences (a) - (c) illustrate how we infer different actions based on the locations. In

sentence (a), we infer that she retrieved chicken. In (b), we infer that she paid for the

chicken. In (c), we infer that she also paid for the chicken, but more importantly, she ate

the chicken. Note how the verb “got” maps to different presumed events depends on the

location.

(d) He finished the cigarette.

(e) He finished the puzzle.

(f) He finished the movie.

Sentences (d) - (f) show how we infer different actions based on the objects when the

main action is elided (i.e., “finished” means that some action has ended but the action

itself is implicit). Most people would assume that the cigarette was smoked, the puzzle

was solved, and the movie was watched.

This type of inference may seem trivial for a human being, yet still remains a difficult

problem for an automatic system in the field of natural language processing.

There has been a considerable amount of work in the natural language processing

(NLP) community to tackle the semantic understanding of natural language. One of the

widely known NLP tasks that are closely related is the semantic role labeling task, which

aims to assign labels to words or phrases in a sentence that indicates their semantic roles,
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in order to answer “who did what to whom, when, where and why, etc.” However, as it

relies on the predicate-argument structure for parsing, its ability to make inference of the

true meaning is limited by the explicit predicate (e.g., usually the root verb). Using the

same example sentence above, “John put the chicken in the oven”, a typical semantic role

labeling system would identify the verb “put” as the root and trigger a “physical place-

ment” event, then John is the putter (agent), the chicken is the thing being put (theme),

and the oven is the destination. It provides an understanding of the sentence based on the

explicit words without any implicit but true meaning that human readers would achieve.

Similar weaknesses can be found in a number of related tasks, such as frame semantic

parsing [7, 53], in which the identified frame (event) can only be triggered if one of its

lexical units exists in the sentence; abstract meaning representation [8], which also relies

on the predicate-argument senses from the PropBank [115]; and so on.

I would argue that the commonsense knowledge of prototypical functions is essential

for natural language understanding systems to “read between the lines” and make the

same types of inferences that people do. For a NLP system to understand the implicit

purpose behind an event as indicated in the previous examples, it needs extra knowledge

associated with the object, the location, and the event. Specifically, this brings up three

questions that unify this thesis:

1.1.1 How Should We Represent Functional Knowledge?

A key question to answer before building any knowledge-based system is how should

we represent the knowledge. Some previous work on commonsense knowledge acquisi-

tion has opted to collect natural language words and phrases as expressions in a subject-

object relation triple, such as ConceptNet [159]. Following this paradigm, I tackled the

problem using natural language to describe the function of locations.

For physical objects, I explored using frames from FrameNet as a canonical representa-

tion for each type of general function that a physical object could have. A frame is a con-

ceptual structure that usually characterizes an abstract scene or situation, which originates

from the study of frame semantics [51]. The Berkeley FrameNet project [141] provides an

online lexical database for frame semantics, which contains 1,221 frames and their seman-

tic roles and lexical units. Compared with natural language phrases, a canonical represen-
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tation naturally captures clusters of objects with the same function and avoids evaluation

issues arising from differing phrases with the same meaning. Besides, FrameNet provides

rich semantic structures to capture more information and can be adapted to other work

that is also based on FrameNet.

1.1.2 How Can We Learn Functional Knowledge?

One challenge for learning commonsense knowledge from text is that people often

do not explicitly mention it in speaking or writing. Some prior work has addressed this

issue by using crowd-sourcing to collect commonsense knowledge. However, human

annotation is expensive and it is difficult to imagine that all human knowledge will be

covered by limited annotations. To tackle the problem, I explored 1) semi-supervised learning

that uses a small amount of labeled data to infer the knowledge for the unlabeled data; 2)

transfer learning using a large pre-trained language model and lexical databases to acquire

the knowledge.

1.1.3 When and Where Should We Apply Functional
Knowledge in Real-World Application?

It has long been an open research question of how artificial intelligence systems could

benefit from existing commonsense knowledge. A big challenge for applying knowledge

of functions is that physical objects are often mentioned when they are not used at all. So

I design a system that identifies whether a physical object mentioned in a sentence has

been/is being used or will likely be used in the future. The goal is to identify sentences

that imply the true use of an object to enable inferences using the functional knowledge

when the action is implicit. Apart from textual understanding, we believe that multimodal

tasks that require different types of intelligence should also benefit from the commonsense

knowledge. Specifically, as a downstream application as well as an extrinsic evaluation,

we select a computer vision task, Situation Recognition, to demonstrate the value of our

prior learned functional knowledge.

1.2 Research Contributions
The primary contributions of this dissertation can be summarized as follows:

Claim #1: Commonsense knowledge about the prototypical functions can be learned
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from large corpora and language models.

We first explored a semi-supervised statistical method that used a small set of labeled

data as “seeds” to iteratively learn new knowledge from a large text corpus. The acquired

knowledge achieved a better quality than several baseline methods for the defined task.

Inspired by the success of transfer learning using large pre-trained language models,

we then explored using the language models in two different ways to predict the functional

knowledge: 1) prompting with manually pre-defined templates to fill in the blanks; 2)

encoding the dictionary definitions for determining semantic similarity. The experimental

results show that by combining these two methods together, the joint model substantially

outperforms several baselines, as well as an existing knowledge base, ConceptNet.

Claim #2: Commonsense knowledge about the prototypical functions can benefit down-

stream artificial intelligence applications.

A big question for commonsense knowledge research is how to apply the knowledge

in real practice. We explored two paths to tackle this question: 1) textual understanding

and 2) visual recognition.

Our initial intuition for using the knowledge is to understand implicit sentences, e.g.,

“he used a washcloth on the floor” should be represented as a cleaning event, not using

event. But the challenge for applying our knowledge of functions is that physical objects

are often mentioned when they are not used at all, e.g., the knife fell off the table. Mo-

tivated by this, I designed an automatic system to classify the usage status of a physical

object mentioned in a sentence into three categories: Used, Anticipated Use, and No Use.

The goal is to recognize the true use of an object to enable prototypical function inferences,

especially when the action is implicit. Our annotation results demonstrate that when a

sentence mentions or implies the use of an object, 96% of these sentences correspond to

the typical function of the object. This data suggests that if we had a perfect object use

classifier, we could infer how an object was used with 96% accuracy simply by assuming

its prototypical function. Our transformer-based model incorporates two types of data

augmentation techniques. It substantially outperforms prompting-based methods with

two well-known language models: GPT-2 [133] and T0++ [145].
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It has been recognized that commonsense knowledge does not realize its full potential

in many of the existing crossmodal systems [186]. It is worth investigating how to inject

commonsense knowledge into a multimodal model through textual inputs. To start, we

selected the situation recognition problem [191], which is the task of recognizing the ac-

tivity depicted in an image, as a downstream application of our functional knowledge.

We built an architecture that compares the performance of recognizing the activity with

and without functional knowledge of objects. Our experimental results show that when

injecting prototypical function frames, the system achieves better performance.

1.3 Dissertation Outline
To help the readers navigate through this dissertation, we describe the primary content

of each chapter as follows:

• Chapter 2: Description of the existing work related to the commonsense knowledge,

functional knowledge as well as other work related to commonsense knowledge of loca-

tions and objects.

•Chapter 3: Discussion of research on learning functional knowledge of locations. This

chapter describes the definition of the prototypical goal activities for locations; a NLP task of

identifying the prototypical goal activities; a human-annotated dataset that is used to eval-

uate the task; and a statistical model that automatically learns the functional knowledge

from a large corpus.

• Chapter 4: Discussion of research on learning functional knowledge of human-made

physical objects and FrameNet frames as its representation. This chapter describes the

definition of the prototypical functions for human-made physical objects; a NLP task of

identifying the prototypical functions of objects based on FrameNet frames; a human-

annotated dataset that is used to evaluate the task; a frame identification system that

is evaluated on standard frame semantic parsing datasets, which serves as a module of

the final system; and a final system to learn the functional knowledge from a pre-trained

language model.

• Chapter 5: Discussion of research on applying functional knowledge of objects to

sentences. It is a common phenomenon that objects are often mentioned when they are

not used at all, which poses a big challenge for applying the functional knowledge in
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textual understanding. This chapter describes the task of identifying the usage status of

the objects mentioned in a sentence; a human-annotated dataset that is created to evaluate

the task; and a transformer based system to classify the usage status into one of the three

categories.

• Chapter 6: Application of functional knowledge of objects for a computer vision task.

This chapter presents a model that use the prior functional knowledge of objects to help

identify the main activity depicted in a still image. It is evaluated on a computer vision

dataset created for situation recognition. The experiments demonstrate the effectiveness

of the functional knowledge for multimodal scene understanding.

• Chapter 7: Conclusions and future work for this research topic.



CHAPTER 2

BACKGROUND

In this chapter, we will discuss previous work that relates to this dissertation. We

will first take a look at the background of commonsense knowledge in the field of nat-

ural language processing, then focus on work related to functional knowledge, as well as

commonsense knowledge of objects and locations.

2.1 Commonsense Knowledge in NLP
It has long been recognized that commonsense knowledge plays an important role

in natural language processing [30, 183]. This observation has led to considerable work

toward learning and applying commonsense knowledge for natural language understand-

ing.

2.1.1 Early Attempts

In the early days of artificial intelligence, Conceptual Dependency theory was proposed

by Roger Schank with the goal of developing a “representation of the conceptual base that

underlies all natural languages” [147, 148]. It introduced a small set of primitive actions

from which the representations can be built. For example, one primitive act ATRANS

means “transfer of an abstract relationship,” so that a sentence such as “John gave a book

to Mary” is then represented as an ATRANS action with the donor (John), the recipient

(Mary) and the object (book). The claim was that this small set of representational elements

could be used to produce a canonical form representation for English sentences (and other

natural languages) [96]. In close relation to my work, physical objects also play an impor-

tant role in conceptual dependency. For example, in conceptual dependency [147, 148],

some primitive acts like PTRANS and PROPEL are explicitly defined involving a physical

object (in an actor-action-object framework).

Then starting from the 1970s, multiple knowledge organization theories descended
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from Conceptual Dependency were proposed. For example, Schank and Abelson [149]

introduced a larger knowledge structures, called scripts, that “precompiled” sets of likely

activities in a common situation. Scripts represented stereotypical sequences of events. A

script consists of a set of roles involved in the script; and scenes that describe the typical

events that are part of the script chain. For example, in the $RESTAURANT script, roles

include the customer, the waiter, the cook, the restaurant, the food, etc. Scenes included

ENTER, ORDER, EAT, PAY, and LEAVE. Then each scene is decomposed into a sequence

of conceptual dependency representations. One influential follow-up work in this area,

Chambers and Jurafsky [26], treats the problem of script induction as learning narrative

event chains. They demonstrate that this type of knowledge can be learned unsupervised

from raw text using textual co-occurrence statistics. A number of publications used sta-

tistical methods to learn the script knowledge [69, 124, 140]. McIntyre and Lapata [102]

used script knowledge to generate short children’s stories. More recently, neural network

models have been proposed to learn the script knowledge [61, 197], including pre-trained

language models [144].

In close relation to this dissertation, “frames” are also well-known structures to rep-

resent knowledge. Frame theory is a study of how we associate words and phrases with

conceptual structures called frames [105]. A frame usually characterizes an abstract scene

or situation. Frame theory asserts that people understand the meaning of words by virtue

of the frames which they evoke [51]. For example, a cooking frame will describe a common

food preparation scenario where a cook makes food from ingredients using some heating

equipment. It may further describe how much time the cooking procedure takes, and the

containers for the food. Frames can also be very simple actions. For example, a placing

frame involves only an agent who does the placing, an object to be placed somewhere, and

a place.

2.1.2 Commonsense Knowledge Resources

2.1.2.1 Expert Curated

Many of the existing commonsense knowledge bases are built manually by experts

since the construction of curated knowledge bases typically leads to a high quality. Fol-

lowing the line of knowledge engineering with manually written facts about the world,
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Cyc [84] is one of the most well-known projects to capture commonsense knowledge. The

Cyc Project [84] was started by Lenat in 1984. Cyc contains a Cyc knowledge base (Cyc KB)

which encodes the commonsense knowledge in formal language CycL based on first-order

logic. Millions of facts and rules were formally codified by ontologists skilled in CycL.

Cyc also contains an inference engine, which was designed to perform general logical

deduction, as well as other inference methods. Numerous other publications have advo-

cated a logic-based approach to knowledge representation and reasoning [62, 64, 100, 109].

Previous work on qualitative spatial representation also proposed different theories of

logic systems based on mathematical topology [34, 179].

Following the theory of frame semantics, the Berkeley FrameNet project [5, 141] pro-

vides an online lexical database for frame semantics and a corpus of annotated docu-

ments. FrameNet [141] lexical database consists of over 1,200 hierarchically-related se-

mantic frames and 13,000 lexical units, was created by linguists of the Berkeley FrameNet

project team. The FrameNet project also provides more than 200,000 annotated sentences.

To achieve that, they designed an annotation editor software with a graphical user inter-

face so that well-trained Framenet experts can efficiently label the sentences with frame

structures. The most popular task regarding frame semantics is frame semantic parsing,

a task of automatically extracting frame structures from sentences [39, 120]. Due to its

popularity, a number of efforts have been made to enhance FrameNet by mapping it to

other lexicons, such as WordNet, PropBank and VerbNet [50, 114, 152]. FrameNet+ [119]

increased the lexical coverage of FrameNet through automatic paraphrasing and manual

verification. Pancholy et al. [116] augmented FrameNet annotations by replacing anno-

tated lexical units with unannotated lexical units in the same frame.

FrameNet has been used for a variety of tasks for knowledge learning. Baumgartner

and Burchardt [9] transformed frames and frame relations into logic programs, potentially

for applying inference on a larger scale. Aharon et al. [1] presented a template-based

system to generate entailment rules. Yatskar et al. [191] introduced situation recognition,

which is the problem of producing a concise summary of the situation that an image

depicts. They use frames and their semantic roles as a representation to describe the main

activity in the image.

Another popular lexical database in the field of NLP is WordNet [104]. It was first
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created at the Cognitive Science Laboratory of Princeton University in 1985, as a lex-

ical database of semantic relations between words such as synonyms, hyponyms and

meronymys. The creation of the database came from lexicographers’ effort to cover all

of the factual information about the meanings of each word. Some other commonsense

knowledge bases import knowledge from WordNet into its own representation, such as

ConceptNet [159].

2.1.2.2 Crowdsourcing

The construction of expert curated knowledge bases does not scale well due to its

dependence on human experts. So attempts have been made to use crowd-sourcing tech-

niques to compile knowledge bases of commonsense knowledge. The well-known project

Open Mind Common Sense (OMCS), originally launched at the MIT Media Lab in 1999,

collected commonsense knowledge from ordinary people through its website [157]. They

designed a webpage that gathers facts, rules, stories, and descriptions using different

interfaces and instructions. For example, one interface is to present the user with a simple

story and ask for knowledge that is helpful in understanding the story, e.g., given the story

“Bob had a cold. Bob went to the doctor.”, the user might enter “Bob was feeling sick” or

“Bob wanted to feel better”. Thanks to the development of the world wide web, it has

become possible for thousands of people to collaborate to construct systems that no single

individual or team could build. OMCS has been running on the Web since September 2000

and they have gathered millions of pieces of commonsense knowledge from thousands of

people.

ConceptNet [93] is a semantic network that originated from the Open Mind Common

Sense project. It is represented as a knowledge graph that connects nodes (words and

phrases of natural language) with labeled edges (relations). Since 2002, ConceptNet has

experienced multiple updates. For example, it has since grown to include knowledge from

other resources such as English Wiktionary and Wordnet [159]. ConceptNet 5.5, released

in 2017, contains over 8 million nodes and 21 million edges, which are aligned with its

pre-defined 36 relations such as AtLocation, Causes, and MadeOf. There are 2 relations

closely related to our functional knowledge: the “Used For” relation which describes “A is

used for B; the purpose of A is B” and the “Capable Of” relation that describes “Something



13

that A can typically do is B.” Chapter 4 will show detailed results using ConceptNet in our

work.

ATOMIC [146] is a commonsense knowledge repository containing everyday common-

sense inferential knowledge about events described in natural language represented by

“if-then” relations. For example, if Person X compliments Person Y, then Person Y feels

flattered; if Person X makes Person Y’s coffee, then Person X gets thanked. They define 9 if-

then relation types such as If-Event-Then-Mental-State and If-Event-Then-Event. ATOMIC

consists of over 300k events associated with 877k inferential relations annotated by crowd

workers. Their crowdsourcing framework gathers annotations in the form of free-form

textual responses to simple questions in order to achieve large-scale and high-quality

collection of commonsense about events.

2.1.2.3 Web Mining

Besides expert curation and crowd-sourcing, a number of previous works have at-

tempted to learn commonsense knowledge from the Web in an unsupervised manner.

Among them, knowledge graphs are probably the most widely studied topic. Knowledge

graphs model information in the form of entities and relationships between them, where

entities (e.g., people, object, location) are represented as nodes and relations (e.g., Is A,

Be Located At) are represented as edges. One piece of knowledge is typically defined

in the form of Subject-Predicate-Object (SPO) Triple, where subject and object are entities

and predicate is the relation between them. For example, the triple (Oven, Be Located At,

Kitchen) describes that the oven is typically in the kitchen. A large number of knowledge

graphs have been created in the field, including Wikidata [175], Freebase [13], DBpedia [4],

YAGO [161], and the Google Knowledge Graph [158].

One of the notable projects, the KnowItAll system [47] was developed at the Univer-

sity of Washington Turing Center headed by Oren Etzioni. The KnowItAll system aims

to extract large collections of facts from the Web in an autonomous, unsupervised, and

scalable manner following the paradigm of Open Information Extraction [48]. Different

Open Information Extraction techniques have been applied to acquire different types of

knowledge [91].

Another well-known system is NELL (Never-Ending Language Learner) [107], which
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was developed by the “Read the Web” project research team at Carnegie Mellon Univer-

sity. It has been designed to read the web 24 hours/day since January 2010 and have

accumulated millions of candidate beliefs. It aims to extract knowledge of individual

categories, e.g., how to map noun phrases into specific semantic categories, and the knowl-

edge of the relation between different categories, e.g., beLocatedAt(object, location). It is

worth noting that knowledge graphs do not necessarily focus on commonsense knowl-

edge. However, methods that have been applied for building knowledge graphs have the

potential for commonsense knowledge acquisition as well [93].

2.1.2.4 Language Models

Some previous publications tackled commonsense understanding using neural net-

work models [143, 150]. More recently, due to the advancement in transfer learning [67,

139] and pre-trained large language models [43, 132], a considerable amount of work has

attempted to learn commonsense knowledge from the pre-trained language models. Trinh

and Le [171] applied large language models to mine commonsense facts from ConceptNet

and their system outperforms previous state-of-the-art on the Winograd Schema Chal-

lenge. Davison et al. [41] used a pre-trained language model for commonsense knowledge

base completion [70, 87]. They transform relational triples into masked sentences and

then rank a triple’s validity by the estimated point-wise mutual information between the

two entities generated by the masked language model. Petroni et al. [123] adopted a

similar idea to conduct a systematic analysis of the commonsense knowledge in pretrained

language models. COMET [16] is a transformer-based framework for automatic construc-

tion of commonsense knowledge bases. It was trained on ATOMIC and ConceptNet by

adapting the weights of language models to learn to produce novel and diverse common-

sense knowledge tuples. Bosselut et al. [17] used COMET to dynamically constructs a

knowledge graph of commonsense knowledge on demand to provide context-dependent

commonsense for downstream inference. More recently, ChatGPT [112] and GPT-4 [113]

has attracted considerable attention within and outside the NLP community due to their

strong ability in language understanding. More work needs to be done to understand their

capability in commonsense understanding [88, 131].
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2.2 Functional Knowledge
Functional knowledge is one specific type of commonsense knowledge that is essential

for NLP tasks, such as narrative text understanding [83].

Pustejovsky [127] proposed generative lexicon, a theory of linguistic semantics that fo-

cuses on the distributed nature of compositionality in natural language. It defines a so

called “Telic role” for entities referring to their purpose or function. Pustejovsky et al. [128]

introduced the Brandeis Semantic Ontology, which was aimed as a large generative lexicon

ontology and lexical database. More recently, Kazeminejad et al. [76] used rule-based

methods to automatically extracts the telic roles from an ontology [111].

Another line of work closely related is the theory of affordances. The concept of per-

ceptual affordances can be traced to the psychological research of Gibson, who proposed

that organisms perceive the environment in terms of the action possibilities that they offer

to them. Affordances reveal the functionalities of objects and the possible actions that

can be performed on them. Gibson argued that when we look at a chair or a cup, our

perception does not provide a generic perceptual view of these objects consisting of all of

their qualities, but instead informs of the affordances such as sit-ability and lift-ability that

they offer to us [75]. Sahin et al. [142] presented that each interaction of an agent with its

environment can be represented as an affordance relation instance tuple: (entity, behavior,

effect). McGregor and Jezek [101] discussed the importance of affordances in recognizing

the meaning of the sentence from implicit verbs. For example, “patron enjoys beer” means

“patron enjoys drinking beer” and “guest finishes cake” means “guest finishes eating cake”.

Chao et al. [29] collected affordances of objects through crowd-sourcing. Specifically, they

asked the annotator whether it is possible (for a human) to perform the action on the

object. An example annotation question is “Is it possible to hunt (pursue for food or sport

(as of wild animals)) a car?”. The worker needs to choose an answer from “Definitely

yes”, “Normally yes”, “Maybe”, “Normally no”, “Definitely no”, “I don’t know”, and

“Description doesn’t make sense or is grammatically incorrect”.

Selectional preference (SP) could also provide a complementary view of the common-

sense knowledge of object functions. Selectional Preference is a common phenomenon

in human language that has been shown to be related to natural language understand-

ing [182]. It refers to the phenomenon that, given a predicate (argument), people have
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preferences for which words are likely to be the argument (predicate) within a certain

linguistic context. For example, eat prefers, as its object argument, words from the semantic

class of food and disprefers words from the semantic class of fluids [89]. Zhang et al. [195]

demonstrated that selectional preference is closely aligned with human commonsense

knowledge. Specifically, they observed that the instances of “Used For” and “Capable

Of” relations in ConceptNet can be well aligned with selectional preference triples man-

ually annotated via crowd-sourcing. For example, a plausible SP pair (sing, song) can

be mapped to (song, UsedFor, sing), (phone, ring) can be mapped to (phone, CapableOf,

ring). This observation indicates that selectional preference may provide an effective way

to acquire functional knowledge of objects. Modi et al. [108] observed that selectional

preference can help predict upcoming content. Their experimental results showed that

incorporating selectional preference can make the model predictions more similar to hu-

man expectations based on a cloze task. Another line of work in parallel with selectional

preference is semantic plausibility [177]. It aims to distinguish a physically plausible event

from an implausible one. For example, our commonsense knowledge helps us decide that

a backpack can contain a cat, but not that a bottle can contain a cat.

2.3 Commonsense Knowledge of Objects
The knowledge of objects plays an essential part in our daily living and communica-

tion. Some work specifically argued the importance of commonsense knowledge about

physical objects in natural language processing. For example, Hobbs et al. [66] introduced

an axiomatization of what might be called “commonsense metaphysics”, including time,

space, physical objects, causality, functionality, etc. Physical objects are especially impor-

tant for conceptual representation systems, such as conceptual dependency [147]. A num-

ber of following work of knowledge representation systems also showed the importance of

the knowledge of physical objects [22, 83]. Lehnert and Burstein [83] presented a structure

called Object Primitives, as an extension to the system of Conceptual Dependency for the

purpose of representing physical objects and knowledge about the objects. They defined

seven Object Primitives, such as connector (indicates what actions are normally enabled

when an object is in a particular state) and consumer (describes objects whose primary

function is to consume other objects).
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The knowledge of physical object has been shown to benefit a plenty of different natural

language understanding tasks, such as selectional preference [45], word sense disambigua-

tion [2], language generation [106], virtual scene generation [28], and question answering

[117]. The importance of this type of information has led to a considerable amount of

attempts to learn different kinds of knowledge of physical objects.

Some previous publications attempted to acquire the knowledge of the characteristics

of the objects. For example, Berland and Charniak [11] extracted parts of objects given a

word denoting the whole object using a news corpus. They applied pre-defined patterns

like “parts of wholes” and statistical method to extract parts of objects, like “engine of a

car”. Girju et al. [57] extends this work by allowing parts or wholes as compound nouns.

They also introduce a more general method of iteratively formulating rules for a decision

tree to determine the part-whole relations. Takamura and Tsujii [166] estimates numerical

attributes of physical object, such as the size, length, and height. They utilize both absolute

clues from a search engine, as well as relative clues such as “A is larger than B” from

corpus.

There has also been considerable amount of work trying to learn different relations

between objects.

Yatskar et al. [190] proposed a model to extract visual commonsense facts of objects

from annotated images and their annotated descriptions using point-wise mutual infor-

mation. Their work focused on spatial information of co-occurring objects through six

types of unique relations (touches, above, besides, holds, on, disconnected). Forbes and

Choi [54] present an approach to learn relative physical knowledge of actions and objects

along five dimensions (e.g., size, weight, strength, rigidness, and speed) from unstructured

natural language text. Gao et al. [55] tried to learn the relations between concrete actions

in the form of verb and noun pairs, as well as their effects on the state change of physical

objects. Their action-effect prediction was modeling in a multimodal fashion.

Collell et al [35] introduced the task of predicting relative spatial arrangements of two

objects under a relationship, which requires common sense spatial knowledge about ob-

jects and actions. Their spatial templates are not restricted to explicit prepositions such as

on, above, below, but also allow implicit spacial relations such as “man pulling luggage”.

More generally, SpRL and SpaceEval [77, 129] introduced a task of identifying and cate-
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gorizing spacial information, including not only static spatial relations, but also dynamic

relations such as motion indicators. More recently, Manotas et al. [98] introduced a larger

dataset specifically for identifying motion of physical entities in text, which contains 1,200

motion verbs, compared to the four motion verbs (e.g., arrive, leave, drive, and walk) in

SpaceEval.

Xu et al. [187] presented the “LocatedNear” relation as one type of commonsense

knowledge describing two physical objects that are typically found near each other. For

example, table and chair, door and bell, window and building. They propose LSTM-based

neural models to automatically extract the knowledge from the Project Gutenberg cor-

pus [80], which contains 3,036 English books by 142 authors. They released a dataset

containing 500 pairs of objects with human annotation for how likely the objects are to

appear near each other.



CHAPTER 3

ACQUIRING PROTOTYPICAL FUNCTIONS

FOR LOCATIONS

Every day, people go to different places to accomplish goals. People go to stores to

buy clothing, go to restaurants to eat, and go to the doctor for medical services. People

travel to specific destinations to enjoy the beach, go skiing, or see historical sites. For most

places, people typically go there for a common set of reasons, which we will refer to as

functions of the location.1 Specifically, we call them prototypical goal activities (goal-acts)

for a location. For example, a prototypical goal-act for restaurants would be “eat food”

and for IKEA would be “buy furniture.” In this chapter, we will introduce a technique to

automatically acquire the knowledge of prototypical goal activities.

Previous research has established that recognizing people’s goals is essential for narra-

tive text understanding and story comprehension [46, 60, 82, 149, 181]. Goals and plans are

essential to understand people’s behavior, and we use our knowledge of prototypical goals

to make inferences when reading. For example, consider the following pair of sentences:

“Mary went to the supermarket. She needed milk.” Most people will infer that Mary purchased

milk, unless told otherwise. But a purchase event is not explicitly mentioned. In contrast, a

similar sentence pair “Mary went to the theatre. She needed milk.” feels incongruent and does

not produce that inference. Recognizing goals is also critical for conversational dialogue

systems. For example, if a friend tells you that they went to a restaurant, you might reply

“What did you eat?”, but if a friend says that they went to Yosemite, a more appropriate

response might be “Did you hike?” or “Did you see the waterfalls?”.

Our knowledge of prototypical goal activities also helps us resolve semantic ambiguity.

For example, consider the following sentences:

1See more discussions on the scope of a “location” in Section 3.1.1.
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(a) She went to the kitchen and got chicken.

(b) She went to the supermarket and got chicken.

(c) She went to the restaurant and got chicken.

In sentence (a), we infer that she retrieved chicken (e.g., from the refrigerator) but did

not pay for it. In (b), we infer that she paid for the chicken but probably did not eat it at

the supermarket. In (c), we infer that she ate the chicken at the restaurant. Note how the

verb “got” maps to different presumed events depending on the location.

Our research aims to learn the prototypical goal-acts for locations using a text corpus.

We propose a learning framework that consists of three steps. First, we extract activities

that co-occur with locations in goal-oriented syntactic patterns. Next, we construct an

activity profile matrix that consists of an activity vector (profile) for each of the locations.

We then apply a semi-supervised label propagation algorithm to iteratively revise the

activity profile strengths based on a small set of labeled locations. We also incorporate

external resources to measure similarity between different activity expressions. Our results

show that this semi-supervised learning approach outperforms several baseline methods

in identifying the prototypical goal activities for locations.

3.1 Learning Prototypical Goal Activities
Our aim is to learn the most prototypical goal-acts for locations. To tackle this problem,

we first extract locations and related activities from a large text corpus. Then we use a

semi-supervised learning method to identify the goal activities for individual locations. In

the following sections we describe these processes in detail.

3.1.1 Location and Activity Extraction

To collect information about locations and activities, we use the 2011 Spinn3r dataset

[23]. Since our interest is learning about the activities of ordinary people in their daily

lives, we use the Weblog subset of the Spinn3r corpus, which contains over 133 million

blog posts.

We use the text data to identify activities that are potential goal-acts for a location.

However we also need to identify locations and want to include both proper names (e.g.,

Disneyland) as well as nominals (e.g., store, beach), so Named Entity Recognition will not
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suffice. Consequently, we extract (Loc, Act) pairs using syntactic patterns.

First, we apply the Stanford dependency parser [97]. We extract the lemmatized sen-

tences that match the pattern “go to X to Y” with the following conditions:

(1) there exists a subject connecting to “go”,

(2) X has an nmod (nominal modifier) relation to “go” (lemma),

(3) X is a noun or noun compound,

(4) Y has an xcomp relation (open clausal complement) with “go”,

(5) Y is a verb.

Figure 3.1 depicts the intended syntactic structure, which we will informally call the

“go to” pattern. For sentences that match this pattern, we extract X as a location and Y

as an activity. If the verb is followed by a particle and/or noun phrase (NP), then we also

include the particle and head noun of the NP. For example, we extract activities such as

“pray”, “clean up”, and “buy sweater”.

This syntactic structure was chosen to identify activities that are described as being the

reason why someone went to the location. However it is not perfect. In some cases, X is

not a location (e.g., “go to great lengths to ...” yields “lengths” as a location), or Y is not a

goal-act for X (e.g., “go to the office to retrieve my briefcase ...” yields “retrieve briefcase” which

is not a prototypical goal for “office”). Interestingly, the pattern extracts some nominals

that are not locations in a strict sense, but behave as locations. For example, “go to the

doctor” extracts “doctor” as a location. Literally a doctor is a person, but in this context it

really refers to the doctor’s office, which is a location. The pattern also extracts entities

such as “roof”, which are not generally thought of as locations but do have a fixed physical

location. Other extracted entities are virtual but function as locations, such as “Internet”.

For the purposes of this work, we use the term location in a general sense to include any

(noun) (verb)
Particle NP HeadLemma: goSubject

prt
nmod(to)

dobj
nsubj

xcomp(to)

compound

Figure 3.1: Dependency relation structure for “go to” pattern.
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place or object that has a physical, virtual or implied location.

The “go to” pattern worked quite well at extracting (Loc, Act) pairs, but in relatively

small quantities due to the very specific nature of the syntactic structure. So we tried to

find additional activities for those locations. Initially, we tried harvesting activities that

occurred in close proximity (within 5 words) to a known location, but the results were too

noisy. Instead, we used the pattern “Y in/at X” with the same syntactic constraints for Y

(the extracted activity) and X (a location extracted by the “go to” pattern).

We discovered many sentences in the corpus that were exactly or nearly the same,

differing only by a few words, which resulted in artificially high frequency counts for

some (Loc, Act) pairs. So we filtered duplicate or near-duplicate sentences by computing

the longest common substring of sentence pairs that extracted the same (Loc, Act). If the

shared substring had length ≥ 5, then we discarded the “duplicate” sentence.

Finally, we applied three filters. To keep the size of the data manageable, we discarded

locations and activities that were each extracted with frequency < 30 by our patterns, i.e.,

remove too rare locations with |(Loc, ∗)| < 30 and too rare activities with |(∗, Act)| < 30.

And we manually filtered locations that are Named Entities corresponding to cities or

larger geo-political regions (e.g., provinces or countries). Large regions defined by gov-

ernment boundaries fall outside the scope of our task because the set of activities that

typically occur in (say) a city or country is so broad. Finally, we added a filter to try

to remove extremely general activities that can occur almost anywhere (e.g., visit). If an

activity co-occurred with > 20% of the extracted (distinct) locations, then we discarded it.

After these filters, we extracted 451 distinct locations, 5, 143 distinct activities, roughly

200, 000 distinct (Loc, Act) pairs, and roughly 500, 000 instances of (Loc, Act) pairs as shown

in Table 3.1.

3.1.2 Activity Profiles for Locations

We define an activity profile matrix Y of size n × m, where n is the number of distinct

locations and m is the number of distinct activities. The rows correspond to different

locations and columns represent different activities. Note that the order of activities are

always the same across different rows, e.g., the second activity in row #1 is the same as

the second activity in row #100. Yi,j represents the strength of the jth activity aj being a
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Table 3.1: Statistics of the dataset.

Count

# of distinct locations 451
# of distinct activities 5,143
# of distinct location and activity pairs 180,957
# of all location and activity pairs 524,352

goal-act for li. For example, as illustrated in Figure 3.2, Yi,j is represented by a circle with

different colors. Location cinema is strongly related to watch film (as indicated by red) and

moderately related to eat popcorn (as indicated by light red). Theatre sometimes refer to the

movie theatre so that watch film is the goal activity (in red), but it can also refer to musical

theatre or broadway theatre when the main activity should be watch show (also in red).

While Sea World is strongly related to watch show, not likely watch film (in grey). We use

yi ∈ Rm to denote the ith row of Y.

Table 3.2 shows a more concrete example of (partial) activity profiles for 4 locations and

3 activities with strength values.2 Our goal is to learn the Yi,j values so that activities with

high strength are truly goal-acts for location li.

We could build the activity profile for location li using the co-occurrence data extracted

from the blog corpus. For example, we could estimate P(aj | li) directly from the frequency

...
...

cinema

theatre

Sea World

eat popcorn watch film watch show

[ · · · · · · · · · · · · ]

[ · · · · · · · · · · · · ]

[ · · · · · · · · · · · · ]

Figure 3.2: Each location (row) has an activity profile, where each column corresponds to
one activity. Each circle represents a value (between 0 and 1) indicating the strength of
the column activity being a goal activity for row location. Color red represents a strong
relation.

2Not actual values, for illustration only.
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Table 3.2: An illustration of the activity profile matrix Y.

a1 = buy book a2 = eat burger ... am = pray
l1 = McDonald’s .10 .30 .01
l2 = Burger King .12 .50 .02
l3 = bookstore .40 .02 .04

...
...

ln = church .05 .01 .70

counts of the activities extracted for li. However, a high co-occurrence frequency doesn’t

necessarily mean that the activity represents a prototypical goal. For example, the activity

“have appointment” frequently co-occurs with “clinic” but doesn’t reveal the underlying

reason for going to the clinic (e.g., probably to see a doctor or undergo a medical test).

To appreciate the distinction, imagine that you asked a friend why she went to a health

clinic, and she responded with “because I had an appointment”. You would likely view

her response as being snarky or evasive (i.e., she didn’t want to tell you the reason). In

Section 3.2, we will evaluate this approach as a baseline and show that it does not perform

well.

3.1.3 Semi-Supervised Learning of Goal-Act Probabilities

Our aim is to learn the activity profiles for locations using a small amount of labeled

data, so we frame this problem as a semi-supervised learning task. Given a small number

of “seed” locations coupled with predefined goal-acts, we want to learn the goal-acts for

new locations.

3.1.3.1 Location Similarity Graph

We use li ∈ L to represent location li, where |L| = n. We define an undirected graph

G = (V, E) with vertices representing locations (|V| = n) and edges E = V × V, such that

each pair of vertices vi and vk is connected with an edge eik whose weight represents the

similarity between li and lk.

We can then represent the edge weights as an n× n symmetric weight matrix W indi-

cating the similarity between locations. There could be many ways to define the weights,

but for now we use the following definition from [199], where σ2 is a hyper-parameter3:

3We use the same value σ2 = 0.03 as [199].
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Wi,k = exp
(
− 1

σ2 (1− sim (li, lk))

)
(3.1)

To assess the similarity between locations, we measure the cosine similarity between

vectors of their co-occurrence frequencies with activities. Specifically, let matrix Fn×m =

[f1, ..., fn]T where fi is a vector of length m capturing the co-occurrence frequencies between

location li and each activity aj in the extracted data (i.e., Fi,j is the number of times that

activity aj occurred with location li). We then define location similarity as:

sim(li, lk) =
fT

i fk

∥fi∥∥fk∥
(3.2)

3.1.3.2 Initializing Activity Profiles

We use semi-supervised learning with a set of “seed” locations from human annota-

tions, and another set of locations that are unlabeled. So we subdivide the set of locations

into S = {l1, ..., ls}, which are the seed locations, and U = {ls+1, ..., ls+u}, which are the

unlabeled locations, such that s + u = n. For an unlabeled location li ∈ U, the initial

activity profile is the normalized co-occurrence frequency vector fi.

For each seed location li ∈ S, we first automatically construct an activity profile vector

hi based on the gold goal-acts which were obtained from human annotators as described

in Section 3.2.1. All activities not in the gold set are assigned a value of zero. Each activity

aj in the gold set is assigned a probability P(aj | li) based on the gold answers. However,

the gold goal-acts may not match the activity phrases found in the corpus (see discussion

in Section 3.2.3), so we smooth the vector created with the gold goal-acts by averaging it

with the normalized co-occurrence frequency vector fi extracted from the corpus.

The activity profiles of seed locations stay constant through the learning process. We

use y0
i to denote the initial activity profiles. So when li ∈ S, y0

i = (fi + hi)/2.

3.1.3.3 Learning Goal-Act Strengths

We apply a learning framework developed by [199] based on harmonic energy min-

imization and extend it to multiple labels. Intuitively, we assume that similar locations

should share similar activity profiles,4 which motivates the following objective function

4This is a heuristic but is not always true.
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over matrix Y:

arg min
Y

∑
i,k

Wi,k∥yi − yk∥2,

s.t. yi = y0
i for each li ∈ S

(3.3)

Let D = (di) denote an n × n diagonal matrix where di = ∑n
k=1 Wi,k. Let’s split Y by

the sth row: Y =

[
Ys
Yu

]
, then split W(similarly for D) into four blocks by the sth row and

column:

W =

[
Wss Wsu
Wus Wuu

]
(3.4)

From [199], Eq (3.3) is given by:

Yu = (Duu −Wuu)
−1WusYs (3.5)

We then use the label propagation algorithm described in [198] to compute Y:

Algorithm 1
repeat

Y ← D−1WY
Clamp yi = y0

i for each li ∈ S
until convergence

3.1.3.4 Activity Similarity

One problem with the above algorithm is that it only takes advantage of relations be-

tween vertices (i.e., locations). If there are intrinsic relations between activities, they could

be exploited as a complementary source of information to benefit the learning. Intuitively,

different pairs of activities share different similarities, e.g., “eat burgers” should be more

similar to “have lunch” than “read books.”

Under this idea, similar to the previous location similarity weight matrix W, we want to

define an activity similarity weight matrix Am×m where Ai,k indicates the similarity weight

between activity ai and ak:

Ai,k = exp
(
− 1

σ2 (1− sim (ai, ak))

)
(3.6)
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where σ2 is the same as in Eq (3.1).

We explore 3 different similarity functions sim(ai, ak) based on co-occurrence with lo-

cations, word matching, and embedding similarities.

First, similar to Eq (3.2), we can use each activity’s co-occurrence frequency with all

locations as its location profile and define a similarity score based on cosine values of

location profile vectors:

simL(ai, ak) =
gT

i gk

∥gi∥∥gk∥
(3.7)

where the predefined co-occurrence frequency matrix F = [f1, ..., fn]T = [g1, ..., gm].

As a second option, the similarity between activities can often be implied by their

lexical overlap, e.g., two activities sharing the same verb or noun might be related. For

each word belonging to any of our activities, we use WordNet [104] to find its synonyms.

We also include the word itself in the synonym set. If the synonym sets of two words

overlap, we call these two words “match”. Then we define the lexical overlap similarity

function between ai and ak:

simO(ai, ak) =


1 if verb and noun match
0.5 if verb or noun match
0 otherwise

(3.8)

As a third option, we can use 300-dimension word embedding vectors [121] trained on

840 billion tokens of web data to compute semantic similarity. We compute an activity’s

embedding as the average of its words’ embeddings. Let simE(ai, ak) be the cosine value

between the embedding vectors of ai and ak:

simE(ai, ak) = cos⟨Embed(ai), Embed(ak)⟩ (3.9)

Finally, we can plug these similarity functions into Eq (3.6). We use AL, AO, AE to

denote the corresponding matrix. We can also plug in multiple similarity metrics such

as (simL + simE)/2 and use combination symbols AL+E to denote the matrix.



28

3.1.3.5 Injecting Activity Similarity

Once we have a similarity matrix for activities, the next question is how will it help with

the activity profile computation? Recall from Eq (3.5), we know that the activity profile

of an unlabeled location can be represented by a linear combination of other locations’

activity profiles. The activity profile matrix Y is an n × m matrix where each row is

the activity profile for a location. We can also view Y as a matrix whose each column

is the location profile for an activity. Using the same idea, we can make each column

approximate a linear combination of its highly related columns (i.e., the location profile of

an activity will become more similar to the location profiles of its similar activities). Our

expectation is that this approximation will help improve the quality of Y.

By being right multiplied by matrix A, Y gets updated from manipulating its columns

(activities) as well. We modify the algorithm accordingly as below:

Algorithm 2
repeat

Y ← D−1WYA
Clamp yi = y0

i for each li ∈ S
until convergence

3.2 Evaluation
3.2.1 Gold Standard Data

Since this is a new task and there is no existing dataset for evaluation, we use crowd-

sourcing via Amazon Mechanical Turk (AMT) to acquire gold standard data. First, we

released a qualification test containing 15 locations along with detailed annotation guide-

lines. 25 AMT workers finished our assignment, and we chose 15 of them who did the

best job following our guidelines to continue. We gave the 15 qualified workers 200 new

locations, consisting of 152 nominals and 48 proper names,5 randomly selected from our

extracted data and set aside as test data. For each location, we asked the AMT workers to

complete the following sentence:6

5Same distribution as in the whole location set.

6The annotation guidelines can be found in Appendix B.
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People go to LOC to

verb noun

LOC was replaced by one of the 200 locations. Annotators were asked to provide an

activity that is the primary reason why a person would go to that location, in the form of

just a verb or a verb noun pair. Annotators also had the option to label a location as an

“error” if they felt that the provided term is not a location, since our location extraction

was not perfect.

Only 10 annotators finished labeling our test cases, so we used their answers as the gold

standard. We discarded 12 locations that were labeled as an “error” by≥ 3 workers.7 This

resulted in a test set of 188 locations paired with 10 manually defined goal-acts for each

one.

A key question that we wanted to investigate through this manual annotation effort

is to know whether people truly do associate the same prototypical goal activities with

locations. To what extent do people agree when asked to list goal-acts? Also, some places

clearly have a smaller set of goal-acts than others. For example, the primary reason to go

to an airport is to catch a flight, but there’s a larger set of common reasons why people go

to Yosemite (e.g.,“hiking camping”, “rock climbing”, “see waterfalls”, etc.). So we examined

all 200 locations and check how often do annotators agree with each other in Figure 3.3.

The x-axis represents the maximum number of annotators that provide the same answer

for one location. The y-axis represents the percentage of locations. For example, the x = 2

column means that about 90% of locations have 2 out of 10 annotators providing the same

answer and there are no 3 answers that are the same.

Complicating matters, the AMT workers often described the same activity with differ-

ent words (e.g., “buy book” vs. “purchase book”). Automatically recognizing synonymous

event phrases is a difficult NLP problem in its own right.8 So solely for the purpose

of analysis, we manually merged activities that have a nearly identical meaning.9 We

7We found that the workers rarely used the “error” label, so setting this threshold to be 3 was a strong
signal.

8We tried using WordNet synsets to conflate phrases, but it didn’t help much.

9The list of merged activities can be found in Appendix A.
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Figure 3.3: x-axis is the maximum number of the same activity provided by 10 annotators
for one location, and y-axis is the percent of locations whose maximum number of the
same activity ≥ x.

were extremely conservative and did not merge similar or related phrases that were not

synonymous because the granularity of terms may matter for this task (e.g., we did not

merge “eat burger” and “eat lunch” because one may apply to a specific location while the

other does not).

Figure 3.4 shows the results of our analysis. Only 1 location was assigned exactly the

same goal-act by all 10 annotators. But at least half (5) of the annotators listed the same

goal-act for 40% of the locations. And nearly 80% of locations had one or more goal-acts

listed by ≥ 3 people. These results show that people often do share the same associations

between prototypical goal-acts and locations. These results are also very conservative

because many different answers were also similar (e.g. “eat burger”, “eat meal”).

In Table 3.3, we show examples of locations and the goal-acts listed for them by the
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Figure 3.4: Percentage of locations that have at least one goal-act assigned by multiple
annotators. The stacked red bars represent the location percentage after merging activities.
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Table 3.3: Goal-acts provided by human annotators.

Location Gold Goal-Acts

Toys R Us buy toys (9), browse gifts

sink wash hands (7), wash dishes (3)

airport catch flight (7), board planes, take airplane,
take trips

bookstore buy books (6), browse books (2), browse best-
sellers, read book

lake go fishing (3), go swimming (3), drive boat (2),
ride boat, see scenery

chiropractor get treatment (3), adjust backs (3), alleviate
pain (2), get adjustment, get aligned

Chinatown buy goods (2), buy duck, buy souvenirs, eat
dim sum, eat rice, eat wontons, find Chinese,
speak Chinese, visit restaurants

human annotators. If multiple people gave the same answer, we show the number in

parentheses. For example, given the location “Toys R Us”, 9 people listed “buy toys” as a

goal-act and 1 person listed “browse gifts”. We see from Table 3.3 that some locations yield

very similar sets of goal-acts (e.g., sink, airport, bookstore), while other locations show

more diversity (e.g., lake, chiropractor, Chinatown).

3.2.2 Baselines

To assess the difficulty of this NLP task, we created 3 baseline systems for comparison

with our learning approach. All of these methods take the list of activities that co-occurred

with a location li in our extracted data and rank them.

The first baseline, FREQ, ranks the activities based on the co-occurrence frequency Fi,j

between li and aj in our patterns. The second baseline, PMI, ranks the activities using

point-wise mutual information. The third baseline, EMBED, ranks the activities based

on the cosine similarity of the semantic embedding vectors for li and aj. We use GloVe

[121] 300-dimension embedding vectors pre-trained on 840 billion tokens of web data. For

locations and activities with multiple words, we create an embedding by averaging the

vectors of their constituent words.
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3.2.3 Matching Activities

The gold standard contains a set of goal-acts for each location. Since the same activity

can be expressed with many different phrases, the only way to truly know whether two

phrases refer to the same activity is manual evaluation, which is expensive. Furthermore,

many activities are very similar or highly related, but not exactly the same. For example,

“eat burger” and “eat food” both describe eating activities, but the latter is more general

than the former. Considering them to be the same is not always warranted (e.g., “eat

burger” is a logical goal-act for McDonald’s but not for Baskin-Robbins which primarily

sells ice cream). As another example, “buy chicken” and “eat chicken” refer to different

events (buying and eating) so they are clearly not the same semantically. But at a place like

KFC, buying chicken implies eating chicken, and vice versa, so they seem like equally good

answers as goal-acts for KFC. Due to the complexities of determining which gold standard

answers belong in equivalence classes, we considered all of the goal-acts provided by the

human annotators to be acceptable answers.

To determine whether an activity aj produced by our system matches any of the gold

goal-acts for a location li, we report results using two types of matching criteria. Exact

Match judges aj to be a correct answer for li if (1) it exactly matches (after lemmatization)

any activity in li’s gold set, or (2) aj’s verb and noun both appear in li’s gold set, though

possibly in different phrases. For example, if a gold set contains “buy novels” and “browse

books”, then “buy books” will be a match.

Since Exact Match is very conservative, we also define a Partial Match criterion to give

50% credit for answers that partially overlap with a gold answer. An activity aj is a partial

match for li if either its verb or noun matches any of the activities in li’s gold set of goal-acts.

For example, “buy burger” would be a partial match with “buy food” because their verbs

match.

3.2.4 Evaluation Metrics

All of our methods produce a ranked list of hypothesized goal-acts for a location. So

we use Mean Reciprocal Rank (MRR) to judge the quality of the top 10 activities in each

ranked list. We report two types of MRR scores.

MRR based on the Exact Match criteria (MRRE) is computed as follows, where n is the
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number of locations in the test set:

MRRE =
1
n

n

∑
i=1

1
rank of 1st Exact Match

(3.10)

We also compute MRR using both the Exact Match and Partial Match criteria. First,

we need to identify the “best” answer among the 10 activities in the ranked list, which

depends both on each activity’s ranking and its matching score. The matching score for

activity aj is defined as:

score(aj) =


1 if aj is an Exact Match
0.5 if aj is a Partial Match
0 otherwise

Given 10 ranked activities a1 ... a10 for li, we then compute:

best_score(li) = max
j=1..10

score(aj)

rank(aj)

And then finally define MRRP as follows:

MRRP =
1
n

n

∑
i=1

best_score(li) (3.11)

In order to get a more intuitive understanding of the model performance, we also

compute a hard Overlap rate – the percentage of locations whose top 10 activities contains

at least one Exact Match.

3.2.5 Experimental Results

Unless otherwise noted, all of our experiments report results using 4-fold cross-validation

on the 200 locations in our test set. We used 4 folds to ensure 50 seed locations for each run

(i.e., 1 fold for training and 3 folds for testing).

The first two columns of Table 3.4 show the MRR results under Exact Match and Partial

Match conditions. The first 3 rows show the results for the baseline systems, and the re-

maining rows show results for our Activity Profile (AP) semi-supervised learning method.

We show results for 5 variations of the algorithm: AP uses Algorithm 1, and the others use

Algorithm 2 with different Activity Similarity measures: AP+AL (location profile similar-

ity), AP+AO (overlap similarity), AP+AE (embedding similarity), and AP+AL+E (location
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Table 3.4: Scores for MRR, Overlap and Top k results.

MRRE MRRP Overlap TOP1 TOP2 TOP3

EMBED 0.02 0.09 0.39 0.05 0.08 0.12
PMI 0.20 0.33 0.77 0.25 0.36 0.41
FREQ 0.23 0.34 0.76 0.23 0.32 0.40

AP 0.28 0.38 0.83 0.29 0.41 0.47
AP+AL 0.28 0.40 0.82 0.32 0.44 0.49
AP+AO 0.23 0.33 0.80 0.24 0.35 0.43
AP+AE 0.25 0.36 0.85 0.28 0.40 0.47
AP+AL+E 0.29 0.42 0.85 0.35 0.44 0.52

profiles plus embeddings).

Table 3.4 shows that our AP algorithm outperforms all 3 baseline methods. When

adding Activity Similarity into the algorithm, we find that AL slightly improves perfor-

mance, but AO and AE do not. However, we also tried combining them and obtained

improved results by using AL and AE together, yielding an MRRP score of 0.42.

To gain more insight about the behavior of the models, Table 3.4 also shows results for

the top-ranked 1, 2, and 3 answers. For these experiments, the system gets full credit if any

of its top k answers exactly matches the gold standard, or 50% credit if a partial match is

among its top k answers. These results show that our AP method produces more correct

answers at the top of the list than the baseline methods.

Table 3.5 shows six locations with their gold answers and the Top 3 goal-acts hypothe-

sized by our best AP system and the PMI and FREQ baselines. The activities in boldface

were deemed correct (including Partial Match). For “bookstore” and “pharmacy”, all of

the methods perform well. Note the challenge of recognizing that different phrases mean

essentially the same thing (e.g., “fill prescription”, “pick up prescription”, “find medicine”).

For “university” and “Meijer”, the AP method produces more appropriate answers than

the baseline methods. For “market” and “phone”, all three methods struggle to produce

good answers. Since “market” is polysemous, we see activities related to both stores and

financial markets. And “phone” arguably is not a location at all, but most human anno-

tators treated it as a virtual location, listing goal-acts related to telephones. However our

algorithm considered phones to be similar to computers, which makes sense for today’s

smartphones. In general, we also observed that Internet sites behave as virtual locations
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Table 3.5: Examples of Top 3 hypothesized prototypical goal activities.

Location Gold Activity List AP+AL+E Top 3 PMI Top 3 FREQ Top 3

bookstore

buy book (6)
browse book (2)

browse bestseller
read book

buy book
purchase book

see book

buy copy
purchase book

buy book

buy book
browse

find book

pharmacy

get drug (4)
fill prescription (3)
get prescription (2)

buy medicine

find medicine
get prescription

pick up prescription

buy pill
fill prescription

pick up prescription

buy pill
fill prescription

pick up prescription

university
get degree (4)

gain education (5)
watch sport

gain education
further education
gain knowledge

study law
study psychology

pursue study

enrol10

enroll
take class

Meijer
buy grocery (8)

buy cream
obtain grocery

buy item
go shopping

get item

check out deal
have shopping

post today

get item
save money

check out

market
buy grocery (6)

buy fresh, buy goods
buy shirt, find produce

make money
eat out

eat lunch

have demand
increase competition

lead player

trade
intervene

make money

phone

make call (4), error (2)
answer call, call friend

have conversation
stop ring

play game
browse website

view website

put number
have number

put card

plug
glance

have number

in language (e.g., “I went to YouTube...”).

3.2.6 Discussion

The goal-acts learned by our system were extracted from the Spinn3r dataset, while the

gold standard answers were provided by human annotators, so the same (or very similar)

activities are often expressed in different ways (see Section 3.2.3). This raises the ques-

tion: what is the upper bound on system performance when evaluating against human-

provided goal-acts? To answer this, we compared all of the activities that co-occurred

with each location in the corpus against its gold goal-acts. Only 36% of locations had at

least one gold goal-act among its extracted activities when matching identical strings (after

lemmatization). Because of this issue, our Exact Match criteria also allowed for combining

verbs and nouns from different gold answers. Under this Exact Match criteria, 73% of

locations had at least one gold goal-act among the extracted activities, so this represents

an upper bound on performance using this metric. Under the Partial Match criteria, 98% of

locations had at least one gold goal-act among the extracted activities, but only 50% credit

was awarded for these cases so the maximum score possible would be ∼86%.

10A lemmatization error for the verb “enrolled”.
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We also manually inspected 200 gold locations to analyze their types. We discovered

some related groups, but substantial diversity overall. The largest group contains∼20% of

the locations, which are many kinds of stores (e.g., Ikea, WalMart, Apple store, shoe store).

Even within a group, different locations often have quite different sets of co-occurring

activities. In fact, we discovered some spelling variants (e.g., “WalMart” and “wal mart”),

but they also have substantially different activity vectors (e.g., because one spelling is

much more frequent), so the model learns about them independently.11 Other groups

include restaurants (∼5%), home-related (e.g., bathroom) (∼5%), education (∼5%), virtual

(e.g., Wikipedia) (∼3%), medical (∼3%) and landscape (e.g., hill) (∼3%). It is worth noting

that our locations were extracted by two syntactic patterns and it remains to be seen if this

has brought in any bias — detecting location nouns (especially nominals) is a challenging

problem in its own right.

3.3 Related Work
Recognizing plans and goals is fundamental to narrative story understanding [19, 149].

Conceptual knowledge structures developed in prior work have shown the importance of

this type of knowledge, including plans [181], goal trees [25], and plot units [82]. Wilen-

sky’s research aimed to understand the actions of characters in stories by analyzing their

goals, and their plans to accomplish those goals. For example, someone’s goal might be

to obtain food with a plan to go to a restaurant. Our work aims to learn prototypical

goals associated with a location, to support similar inference capabilities during story

understanding.

Goals and plans can also function to trigger scripts [37], such as the $restaurant script.

There has been growing interest in learning narrative event chains and script knowledge

from large text corpora [26, 27, 69, 124, 125]. In addition, Goyal et al. [59, 60] developed

a system to automatically produce plot unit representations for short stories. A manual

analysis of their stories revealed that 61% of Positive/Negative Affect States originated

from completed plans and goals, and 46% of Mental Affect States originated from explicitly

stated or inferred plans and goals.

Elson and McKeown [46] included plans and goals in their work on creating exten-

11Of course normalizing location names beforehand may be beneficial in future work.
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sive story bank annotations that capture the knowledge needed to understand narrative

structure. Researchers have also begun to explore NLP methods for recognizing the goals,

desires, and plans of characters in stories. Recent work has explored techniques to detect

wishes (desires) in natural language text [58] and identify desire fulfillment [31, 135].

Graph-based semi-supervised learning has been successfully used for many tasks, in-

cluding sentiment analysis [49, 137], affective event recognition [44] and class-instance

extraction [169]. The semi-supervised learning algorithm used in this chapter is modeled

after a framework developed by Zhu et al. [199] based on harmonic energy minimization

and a label propagation algorithm described in [198].

3.4 Conclusion
We introduced the problem of learning prototypical goal activities for locations. We ob-

tained human annotations and showed that people do associate prototypical goal-acts with

locations. We then created an activity profile framework and applied a semi-supervised

label propagation algorithm to iteratively update the activity strengths for locations. We

demonstrated that our learning algorithm identifies goal-acts for locations more accurately

than several baseline methods.

However, this problem is far from solved. Challenges also remain in how to evaluate

the accuracy of goal knowledge extracted from text corpora. Nevertheless, our work

represents a first step toward learning goal knowledge about locations, and we believe that

learning knowledge about plans and goals is an important direction for natural language

understanding research. In future work, we hope to see if we can take advantage of more

contextual information as well as other external knowledge to improve the recognition of

goal-acts.



CHAPTER 4

ACQUIRING PROTOTYPICAL FUNCTIONS

FOR PHYSICAL OBJECTS

Humans are a creative species. New objects are invented by people every day, and

most are created for a reason. Knives were created for cutting, bicycles were created for

transportation, and telephones were created for communication. Some objects can perform

multiple functions (e.g., smart phones) and humans are also creative at finding secondary

uses for objects (e.g., heavy objects are often used as makeshift paperweights). But when

we mention physical objects in conversation or in writing, people generally infer that the

object will be used in the most prototypical way (unless they are told otherwise), which we

refer to as the prototypical function of the object. In this chapter, we will tackle the problem

of how to learn this type of knowledge.

The prototypical function of human-made physical artifacts is a kind of commonsense

knowledge that often plays a role in natural language understanding. Consider the fol-

lowing examples of inferences that arise from physical artifacts.

Example 1

a) He killed the mayor with a gun.
b) He killed the mayor with a knife.
c) He killed the mayor with a bomb.

Example 1 describes a killing with three different types of instruments. Most readers

would assume that a) describes a shooting, b) describes a stabbing, and c) describes an

explosion. But exactly how each instrument was used is implicit. We make different

inferences about how they were used based on our knowledge of the objects.

Example 2 illustrates how we infer different actions based on the object when the main

action is elided (i.e., “finished” means that some action has ended but the action itself
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Example 2

a) She finished the cigarette.
b) She finished the puzzle.
c) She finished the movie.

is implicit). Most people would assume that the cigarette was smoked, the puzzle was

solved, and the movie was watched.

Example 3

a) She put the cake in the box.
b) She put the cake in the oven.
c) She put the cake in the refrigerator.

Example 3 illustrates second-order inferences that can follow from a sentence. The verb

“put” means that the cake was placed somewhere, but the object of “in” leads to different

inferences about intention. Putting a cake in an oven implies that it will be baked, but

putting a cake in a refrigerator implies that it will be cooled.

Example 4

a) He ordered a taxi.
b) He ordered a pizza.
c) He ordered a t-shirt.

Example 4 reveals inferences about motivations and future plans. If someone orders a

taxi then we infer that they need transportation, if they order a pizza then we expect they

will eat it, and if they order a t-shirt then we assume it will be worn.

We believe that it is essential for NLP systems to “read between the lines” and make

the same types of inferences that people do when reading these sentences. The goal of

our research is to explore methods for learning the prototypical functions of human-made

physical artifacts so that future NLP systems can benefit from this knowledge. First,

we define a new NLP task to associate physical objects with frames from FrameNet as

a canonical representation for their prototypical function. We introduce a gold standard

data set of 938 physical artifacts that have each been labeled with a frame that represents its

prototypical function based on human judgements. Second, we evaluate baseline models
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to assess how well existing resources and simple methods perform on this task. Third, we

present transformer-based models for this task that exploit both masked sentence patterns

and the definitions of physical artifacts and frames. Experiments show that our best model

yields substantially better results than the baseline methods.

4.1 Motivation
This work was motivated by observing sentences that mention physical objects and

realizing that we often infer a richer meaning for these sentences than what they explicitly

state. We came to appreciate that the prototypical function of an object was the basis for

many of our inferences, but we also recognized that not all objects have a prototypical

function. In particular, naturally occurring objects rarely have a prototypical function

(e.g., rock, snake). In contrast, human-made physical objects usually do have a prototypical

function because they were created for a purpose. Consequently, we limited the scope

of our work to human-made artifacts. Of course, some objects are commonly used for

multiple purposes, but in most cases there seems to be one use that is dominant, so for

the sake of tractability we decided to assign a single (most) prototypical function to each

artifact for this research. We had initially planned to include food items, but many foods

are also naturally occurring plants or animals (e.g., watermelon, shrimp) so we omitted them.

It may be worth re-examining these limitations in future work.

Another key decision that we had to make was how to represent the prototypical func-

tions. Some recent work on commonsense knowledge acquisition has opted to generate

words and phrases as expressions of a relation, such as ConceptNet [159] and ATOMIC

[146]. As an example, ConceptNet includes a relation called UsedFor that lists the follow-

ing phrases as uses for a knife: stabbing, butter, cutting food, carving wood, slicing, boning.

We chose to adopt a different approach. First, we wanted a canonical representation for

each type of function that represents a general concept, rather than a list of phrases. This

approach naturally captures clusters of objects (i.e., those assigned to the same frame) and

avoids evaluation issues arising from differing phrases that may be learned for similar

objects (e.g., cut vs. carve vs. slice). Second, we did not want to reinvent the wheel and

develop a new taxonomy of action types ourselves. For these reasons, we chose to use the

semantic frames in FrameNet as a canonical representation for our prototypical functions.
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Although FrameNet is not perfect nor complete, it contains many of the actions that we

needed. Overall, it serves as an appropriate platform for our work.

4.2 Dataset Creation
4.2.1 Artifact Selection

As explained in Section 4.1, our work focuses on artifacts that are 1) physical objects

and 2) created by people. To acquire a list of objects that meet these criteria, we extracted

all terms in synsets that are descendants of the artifact.n.01 synset1 in WordNet [104]. We

then removed a term from the list if the artifact sense was not its first sense definition.2

This process produced 8,822 entries, many of which met our criteria except that the list

still contained a lot of abstract terms (e.g., vocabulary, modernism).

To address this issue, we turned to Brysbaert et al. [21] which presents concreteness

ratings based on crowd sourcing for 37,058 English words and 2,896 two-word expressions.

They used a 5-point rating scale ranging from abstract to concrete, so we extracted words

with the part-of-speech “noun” and a rating ≥ 4.5, which produced a list of 3,462 concrete

nouns. We then intersected this list with the terms extracted from WordNet, producing a

set of 1,017 concrete physical artifacts.

4.2.2 Frame Selection

FrameNet 1.7 contains 1,221 frame definitions. However, not all of them are suitable for

representing typical uses of physical artifacts, which should be actions that involve a phys-

ical object. For example, some frames are intended for abstract nominal categories (e.g.,

Calendric_unit for temporal terms), high-level abstractions (e.g., Intentionally_act which sits

above more specific frames), and events or states that are not typically associated with

physical artifacts (e.g., Judgement).

To focus on an appropriate subset of frames, we manually selected 42 frames in FrameNet

that represent actions that are common functions of human-made physical artifacts. We

intentionally didn’t select frames that categorize nouns in a general way. For example,

1Except we removed synsets for buildings and roads.

2Because the first sense definition in WordNet usually, though not always, represents the most common
meaning.
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FrameNet contains an Artifact frame that includes oven, phone and wheel as its lexical units.

This frame only serves to identify terms that represent physical objects, and we wanted

frames that represent a function. The list of frames that we used is shown in Table 4.1 along

with the frequency with which they occur in our gold standard data set, as described in

the next section.

4.2.3 Human Annotation

To create a gold standard data set with frame assignments for the physical artifacts, we

recruited 3 human annotators. We presented the annotators with the WordNet definition

for each term and asked them to select one frame that captures the most prototypical use

for the artifact. In addition to the 42 function frames, we also gave them a None option

if none of the frames was a good match, and a Not an artifact option if the term was

not in fact a human-made physical artifact (because our list extracted from WordNet and

Brysbaert et al. [21] was not perfect). To prepare the annotators, we asked them to read the

definitions of all the frames beforehand and we gave them detailed annotation guidelines

to familiarize them with the task.3 We randomly sorted the artifacts before presenting

them to the annotators.

Table 4.1: Frames for prototypical functions of physical artifacts. The frequency with
which they occur in our gold standard data set is shown in parentheses.

Artifact Function Frames

Wearing (145) Light_movement (16) Hunting (8)
Containing (76) Building (15) Cause_fluidic_motion (6)
Self_motion (69) Dimension (15) Eclipse (5)
Protecting (52) Removing (14) Inhibit_movement (5)
Supporting (49) Closure (13) Performing_arts (5)
Cause_harm (48) Competition (13) Setting_fire (5)
Perception_experience (44) Create_representation (13) Cause_to_fragment (4)
Make_noise (37) Bringing (12) Education_teaching (3)
Cause_motion (24) Sleep (12) Excreting (3)
Cutting (19) Text_creation (12) Cause_to_be_dry (2)
Cooking_creation (18) Attaching (11) Agriculture (1)
Ingestion (18) Contacting (10) Commercial_transaction (1)
Reading_activity (17) Cure (9) Residence (1)
Grooming (16) Cause_temperature_change (8) Rite (1)

3The annotation guidelines can be found in Appendix C.
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When the annotations were finished, we measured the pair-wise inter-annotator agree-

ment (IAA) using Cohen’s kappa. The IAA scores were 0.75, 0.72 and 0.69, with an average

of κ = 0.72. Given the difficulty of this task (44 possible labels), we felt that the human

agreement was relatively good.

Finally, we created the gold standard data set4 by using the majority label from the

three human annotators. There were 72 artifacts with no majority label (i.e., the annotators

assigned 3 different labels), and 7 terms with the majority label Not an artifact, so we

discarded these 79 terms. Consequently, our gold standard data set contains 938 physical

artifacts that are each labeled with a frame representing its most prototypical function, or

labeled as None when none of our 42 frames was appropriate.5 Table 4.2 shows the 10 most

frequently assigned frames and a few examples of artifacts assigned to each frame.

4.3 Frame Identification
We have introduced the physical objects and using frames to represent their prototypi-

cal functions. Now the task is formed as, given a physical object, our system should predict

the most appropriate frame that describes the most typical way people use this object. This

goal can be aligned with a standard NLP task, frame identification. In this section, we will

present a model for frame identification, which will later be applied as one component for

Table 4.2: Examples of artifacts for the top 10 frames.

Frame Artifact Examples

Wearing hat, shirt
Containing basket, luggage
Self_motion bicycle, yacht
Protecting armor, helmet
Supporting chair, scaffolding
Cause_harm cannon, spear
Perception_exp earphone, eyeglass
Make_noise bell, violin
Cause_motion engine, propeller
Cutting knife, scissors

4The data set is available at: https://github.com/tyjiangU/physical_artifacts_function

583 terms were assigned to the None category.

https://github.com/tyjiangU/physical_artifacts_function


44

learning the prototypical function.

Research on frame semantics has grown within the fields of natural language processing

and cognitive science since the 1970s as the study of how we associate words and phrases

with cognitive structures called frames, which characterize a small abstract scene or situ-

ation [51, 52]. The Berkeley FrameNet project [5] provides an online lexical database for

frame semantics together with a corpus of annotated documents. Frame semantic parsing

is the task of automatically extracting frame semantic structures from sentences. The

process typically consists of three steps: target identification, which identifies frame-evoking

predicates in the sentence; frame identification, which identifies the evoked frame for each

target; and argument identification, which identifies arguments of a frame and labels them

with semantic roles (frame elements). In this work, we focus on the frame identification

problem.

FrameNet 1.7 contains more than 13,000 lexical units (a word lemma with a sense),

each associated with a semantic frame. A polysemous word is associated with multiple

lexical units (one for each sense), and is therefore linked to multiple frames. The frame

identification task requires a system to identify the most relevant frame for a target word

or phrase based on its sentence context. Here is an example:

The pandemic has sparked a lot of problems for the economy.

Given the target word sparked, the goal is to determine which frame should be triggered.

The word lemma spark has two senses in FrameNet: “with obj. ignite” and “provide the

stimulus for”. The former sense is associated with the Setting_fire frame and the latter

one is associated with the Cause_to_start frame. The Setting_fire frame is defined as “this

frame describes the creation of a flame...”, and the Cause_to_start frame is defined as “a

cause, animate or inanimate, causes a process, the effect, to begin”. So Cause_to_start is the

correct frame for this sentence.

Previous work has shown the success of using feature engineering with linear clas-

sification models [74] and discriminative probabilistic models [38], which were later im-

proved by applying distributed word representations and deep neural network models

[65]. Syntactic information, typically dependency paths, has consistently played an im-

portant role in frame identification [39, 120].
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This work is motivated by the rich lexicographic information about frames and lexical

units provided by the FrameNet database, which has not been fully utilized for the frame

identification task. Recent advances in large pre-trained transformer models [43] have

demonstrated the ability to capture semantic meaning in dictionary definitions for the

related problem of word sense disambiguation [12, 68].

Our model uses the definitions of frames and lexical units in FrameNet as a source of

knowledge to help assess the semantic coherence between the target word and candidate

frames. Specifically, we utilize the contextual embeddings produced by the BERT [43]

model to determine if a candidate lexical unit and frame express the same meaning as the

target word in the given context. Our model achieves state-of-the-art performance on two

FrameNet datasets and a FrameNet-annotated dataset based on Yahoo! Answers. Our

code is open-source and available online.6

4.3.1 Identify the Appropriate Frame

Given a sentence and a target word or phrase, the frame identification task assigns the

most relevant frame to the target according to the sentence context. Figure 4.1 shows the

framework of our model called FIDO (Frame Identification with DefinitiOns). Our system

takes the sentence and the definitions of associated lexical units (senses) and their frames

as input to the BERT model, as indicated by the green blocks. Each green block represents

the target word in the sentence, one of its senses, and that sense’s associated frame in

FrameNet. Then we use the output vectors to produce a probability distribution over all

Frame
Definition

Lexical Unit
Definition 

[CLS] [SEP] [SEP]

Sentence Lexical Unit
Definition 

Frame
Definition... ℒBERT Linear

...

[Target  ]

[CLS] [SEP] [SEP]

Sentence

[Target  ]

Figure 4.1: Overview of the FIDO architecture. Each green block represents a different
candidate pair (lexical unit, frame) for the same Targeti.

6https://github.com/tyjiangU/fido

https://github.com/tyjiangU/fido
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of the candidate frames. We select the frame with the maximum probability as the answer.

4.3.1.1 Notation

We denote the ith example (i = 1, 2, ..., n) consisting of a sentence and designated target

word or phrase as ⟨s, t⟩i, its correct frame as f ∗i , the set of lexical units associated with the

target as l1
i , l2

i , ..., lmi
i , and their corresponding frames as f 1

i , f 2
i , ..., f mi

i ( f ∗i is among them).

We seek to estimate the probability of the jth frame being the correct frame by:

Pr( f j
i |⟨s, t⟩i) =

exp(g(⟨s, t⟩i, f j
i ))

∑mi
k=1 exp(g(⟨s, t⟩i, f k

i ))
(4.1)

where g(·) is a function produced by our model for scoring the assignment of a frame to

the sentence and target. We use negative log likelihood as our loss function:

L = −
n

∑
i=1

log Pr( f ∗i |⟨s, t⟩i) (4.2)

where n is the total number of training examples.

4.3.1.2 Modeling

FrameNet provides unique definitions for each lexical unit (LU) and frame. A LU is

a pairing of a word lemma and a meaning (sense). Determining the correct LU (sense)

uniquely determines the correct frame because each sense of a polysemous word is linked

to a different frame. For example, the word cut can trigger different frames depending

on its meaning (the definition sentences follow the bold lexical unit or frame names), as

shown in Table 4.3.

We use the BERT [43] model as the base of our architecture to produce the function g(·)

as described in Eq (4.1). For each target, first we extract LUs from FrameNet that have

Table 4.3: Examples of lexical units and their associated frames.

Lexical Unit Associated Frame

cut.n: the way or style in which a garment
or the hair is cut

Hair_configuration: temporary or
permanent styles and configurations of
hair

cut.v: divide into pieces with a knife or
other sharp implement

Cutting: an agent cuts an item into pieces
using an instrument
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the same lemma and their corresponding frames to form a set of candidate (LU, Frame)

pairs. Our goal is to predict whether the target in the sentence has the same meaning as

the definitions of a candidate LU and its associated frame.

As input to the BERT model, we use the sentence as the first sequence and concatenate

a LU definition and frame definition as the second sequence. Each definition starts with

the LU name or frame name and a colon, followed by the definition description.

Instead of using the output vector of the [CLS] token as is typical, we use the last

hidden vector of the target word as output (if there is more than one token, we only use

the first one). By passing the output vector through a linear layer, we then get a score for

assigning a candidate frame to the sentence and target. Finally the scores for all candidate

frames are passed through the softmax function to get the probabilities in Eq (4.1).

4.3.2 Evaluation

4.3.2.1 Datasets

• FrameNet: To compare FIDO with previous systems, we evaluate our model on

FrameNet (FN) 1.5 using the same train/dev/test data split as Das et al. [39]. We also

evaluate our model on FN 1.7 which has been available since 2016 and contains nearly

20% more gold annotated data than FN 1.5. We use the same data split as Swayamdipta

et al. [164] for FN 1.7. Table 4.4 shows the number of examples in each split.

• YAGS: YAGS [63] is a FrameNet-annotated test set based on question answering data

from Yahoo! Answers,7 a community-driven question-and-answer forum. The annotations

are based on FN 1.5. We train on FN 1.5 and evaluate on the YAGS test set to compare

results with Hartmann et al. [63].

Table 4.4: Dataset sizes.

FN 1.5 FN 1.7 YAGS

Train 15,017 19,391 -
Dev 4,463 2,272 1,000
Test 4,457 6,714 2,093

7https://webscope.sandbox.yahoo.com/
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4.3.2.2 Training Details

We use the pre-trained uncased BERTBASE model with the same settings as Devlin et al.

[43] and fine-tune on our training data. We set the max sequence length as 300, batch size

as 16, learning rate started at 2e-5, and train for 5 epochs. All reported results are averaged

over 3 runs with random seeds.

4.3.2.3 Results

Table 4.5 compares our model with previous methods on the FN 1.5 dataset. Hermann

et al. [65], Hartmann et al. [63], and Open-SESAME [164] use distributed representations

and syntactic features with neural networks. Botschen et al. [18] extends Hartmann et al.

[63] with visual embeddings. Yang and Mitchell [188] integrates a sequential and relational

network for joint learning. Peng et al. [120] has achieved the best prior results on frame

identification using a multitask approach to learn semantic parsers from disjoint corpora.

It is worth noting that besides the FN 1.5 training set, they also use 153,952 exemplar

sentences for training, which is more than 10 times the size of our training data. FIDO

achieves better performance than all of the prior systems.

Table 4.6 shows our results compared to Peng et al. [120] on FN 1.7. FIDO achieves

Table 4.5: Accuracy on FN 1.5.

Model Accuracy

Hermann et al. [65] 88.4
Hartmann et al. [63] 87.6
Yang and Mitchell [188] 88.2
Open-SESAME (2017) 86.9
Botschen et al. [18] 88.8
Peng et al. [120] 90.0

FIDO 91.3

Table 4.6: Accuracy on FN 1.7 and YAGS.

Dataset Model Accuracy

FN 1.7
Peng et al. [120] 89.1
FIDO 92.1

YAGS
Hartmann et al. [63] 62.5
FIDO 70.5
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a 3.0% absolute accuracy gain on this data set. The YAGS data set [63] contains unknown

targets that do not have related LUs in FN 1.5 and also unlinked targets (i.e., the provided

gold frame does not belong to the set of frames associated with this target in FN). Our

model is not able to make a correct prediction for these cases based on its design. There

are 122 unknown or unlinked targets in the test set, on which our model will get a zero

score. Despite this limitation, our model still outperforms Hartmann et al. [63], which

demonstrates its ability to generalize across text genres.

4.3.2.4 Analysis

We performed an ablation study to assess the contributions of each part of our model.

In Table 4.7, the first row shows the results for our complete FIDO model. Rows 2-3 show

results when using only the definitions of frames (FRdef only) or LUs (LUdef only). We

see that the frame definitions contribute the most to performance. Using the LU definitions

alone on FN 1.7 also achieves quite good results. But combining both definitions together

yields better results than either one alone.

In order to tease apart the impact of the definitions from the impact of BERT, we did

an experiment replacing each definition simply with the name of the frame or LU. These

results appear in the FIDO (NO def) row. Removing the definitions results in a large

performance drop. The definitions clearly play a major role.

In the bottom row, we show the results of experiments using the output vector of the

[CLS] token (all other settings the same), which did not perform as well as using the target

token. This is not surprising as [CLS] aggregates the entire sequence representation rather

than focusing on the target.

Previous work also reported accuracy on ambiguous cases (i.e., when the target word is

Table 4.7: Ablation study on FN 1.5 and FN 1.7.

Model FN 1.5 FN 1.7

FIDO 91.3 92.1

FIDO (FRdef only) 90.1 91.1
FIDO (LUdef only) 88.9 90.7
FIDO (NO def) 80.3 79.4

FIDO (CLS) 89.3 90.5
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associated with multiple frames), which more directly shows the model’s ability to disam-

biguate frames. However, the set of ambiguous targets is different across papers. To avoid

comparing apples and oranges, we report accuracy on two different sets of ambiguous

targets. In Table 4.8, the Amb1 column follows Peng et al. [120], which uses the gold LU’s

part-of-speech (POS) tag to form the candidate frame list. In this setting, if a target has

just one sense when its POS is known, it is not considered to be ambiguous. Our model

outperforms Peng et al. [120] on both FN 1.5 and FN 1.7 datasets. The Amb2 column shows

the accuracy of ambiguous targets using only the lemma of the target (i.e., not relying on

gold POS tags). We encourage future work to articulate which setting is used.

We also analyzed whether unseen frames and unseen targets were a major source of

errors for our model. On FN 1.7, our FIDO model achieved 92.1% accuracy, so it mislabeled

7.9% of the test cases. We found that 1.4% of the test cases were mislabeled and had an

unseen frame (i.e., the gold frame was not seen with the target in the training data), and

0.52% of the test cases were mislabeled and had an unseen target (i.e., the target was not

seen in the training data). Therefore only about 1/4 of the FIDO errors were due to unseen

frames and unseen targets. We conclude that even for frames and targets that appear in

the training data, there is still substantial room for improvement on this task.

4.3.3 Summary

In this section, we tackled the frame identification problem by assessing the semantic

coherence between the meaning of a target word in a sentence, and a candidate frame. Our

model FIDO exploits the frame and lexical unit definitions provided by FrameNet and

a pre-trained transformer model to generate semantic representations. The experiments

show that this model achieves better performance than previous systems on two versions

of FrameNet data and the YAGS dataset. This relatively simple architecture that brings

Table 4.8: Accuracy on ambiguous cases.

Dataset Model Amb1 Amb2

FN 1.5
Peng et al. [120] 78.0 -
FIDO 81.0 83.6

FN 1.7
Peng et al. [120] 77.5 -
FIDO 83.8 85.9
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together pre-trained language models with frame and sense definitions can produce a

highly effective system for frame identification. In the next section, we will show how

FIDO can help identify the prototypical functions.

4.4 Learning Prototypical Functions
In this section, we will introduce several approaches for learning the prototypical func-

tions of human-made physical artifacts. To assess the difficulty of this task, we first present

baseline models that 1) exploit information extracted from existing knowledge bases and

2) use co-occurrence information extracted from a text corpus. Next, we explore methods

that use large neural language models. We describe a method that uses masked pattern

predictions, and then present models that also incorporate artifact sense definitions and

frame definitions.

4.4.1 Notation

We model our task as a multiclass classification problem. The artifacts and frames are

denoted as ai (i = 1..m) and f j (j = 1..n). The task is to select the f j that represents the most

prototypical use for an artifact ai. We will denote the set of lexical units for f j in FrameNet

as LUj = {lk|lk evokes f j}.8

4.4.2 ConceptNet and COMET Baselines

ConceptNet [159] is a well-known commonsense knowledge resource that contains a

UsedFor relation, which is potentially relevant to our task (though it should be noted that

an object can be used in ways that are not prototypical, so our task of identifying the

prototypical use is not exactly the same). COMET [16] is a framework that was trained on

ConceptNet with the goal of improving upon its coverage. Our first experiments apply

these resources to see how effective they can be for this task.

For each artifact in ConceptNet, we extract the first word from each phrase listed under

its UsedFor relation. These are typically verbs that describe an action although sometimes

they are nouns. For COMET, we use its beam-10 setting to generate 10 phrases of the

UsedFor relation for each artifact.

8We merged lexical units from similar frames in FrameNet. See details in Section 4.5.3.
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Next, we want to use the extracted words to rank candidate frames. FrameNet de-

fines lexical units that can evoke a specific frame. For example, read can trigger the Read-

ing_activity frame. Suppose our artifact is a book and one of the extracted words is read,

then Reading_activity is a candidate frame. We then score each frame based on the overlap

between the words extracted from ConceptNet or COMET and the frame’s lexical units.

Specifically, we define f req(ai, w) as the count of a word w occurring in the UsedFor

relation of artifact ai, and I(w, f j) = 1 if w ∈ LU j otherwise 0. Then our score for f j is

defined as:

Scn(ai, f j) = ∑
wϵW

f req(ai, w) ∗ I(w, f j), (4.3)

where W is the set of extracted words. Finally, for each ai, we select f j′ such that j′ =

arg maxj Scn(ai, f j) as its prototypical function. If Scn(ai, f ′j ) equals zero, then we predict

None.

4.4.3 Co-occurrence Baseline

An intuitive idea for potentially learning common functions associated with physical

artifacts is to extract verbs that frequently co-occur with the artifact in a large text corpus.

We assume that if a verb frequently co-occurs with an artifact, then the frames associated

with the verb are plausible candidates for the artifact’s prototypical function.

For this approach, we created 3 dependency parse patterns to extract <noun, verb>

pairs, as depicted in Figure 4.2. The physical object is the noun represented by N. The

activity is a verb (with an appended particle if one exists) represented by V. We included

the verb-dobj pattern because some artifacts and their functions are expressed in this way,

such as “read book” or “wear jacket”. We used spaCy9 to parse the whole English Wikipedia

corpus (as of Feb 20, 2020) and extracted over 3.8 million <N, V> pairs (305,055 distinct

use N to V

dobj

xcomp

V N

dobj

V ADP N

prep pobj

Figure 4.2: Dependency patterns used for co-occurrence.

9https://spacy.io/
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pairs) for our 938 artifacts. We define the function f req(ai, v) as the co-occurrence count of

artifact ai and verb v in the corpus. Then we apply the same method described in Section

4.4.2 to assign a score to each frame based on the extracted verbs and select the best frame.

4.4.4 Masked Language Model (MLM) Baseline

Co-occurrence in text is a strong signal of correlation. But an activity that is highly

correlated with an artifact may not be its prototypical use. For example, cut frequently

co-occurs with rope, but the purpose of a rope is not to be cut – its prototypical use is for

attaching things.

Recent work has successfully used masked language models to learn commonsense

knowledge [41], so we explored whether masked language models could be beneficial for

our task. We use the BERT [43] masked language model to get prediction scores for every

(ai, lk) pair, where ai is one of our physical artifacts and lk is a lexical unit linked to one

of our 42 candidate frames. We defined 6 sentence templates that represent expressions

describing what an object is used for, which are shown below. The first blank space is for

artifact ai and the second blank space is for action lk:

(1) can be used to .
(2) I used to .
(3) can be used for .
(4) I used for .
(5) The purpose of is to .
(6) If I had , I could .

Next, we produced a probability distribution over all of the lexical units based on the

second blank position. Specifically, for the t-th sentence template st, we obtain Pr(lk|st, ai)

by masking only the second blank space (ai is inserted into the first blank) and we obtain

Pr(lk|st) by masking both blank space. Then we define the score of lk as the typical use of

artifact ai based on the t-th template as:

U(ai, lk, st) = log Pr(lk|st, ai)− log Pr(lk|st). (4.4)

The score U(ai, lk) using all templates is computed as: U(ai, lk) =
1
t ∑t U(ai, lk, st).

Finally, we define the score for f j being the prototypical function for ai as:
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Smlm(ai, f j) = ∑
lk∈LUj

U(ai, lk). (4.5)

We select f j′ where j′ = arg maxj Smlm(ai, f j) as the best frame. If Smlm(ai, f ′j ) ≤ 0, we

predict None.

4.4.5 Learning from Masked Patterns

Our MLM baseline uses the discrete output of the masked language model (i.e., the

prediction tokens from the vocabulary and their scores). In order to take advantage of

a language model’s fine-tuning capability, we use the same architecture as described in

Section 4.4.4, except that instead of using the predicted lexical units and their probability

Pr(lk|st, ai), we retrieve the last hidden state vector for the [MASK] token as output. Since

there are 6 masked templates, we have 6 output vectors for each artifact ai. We compute the

average of these vectors and pass it through a linear layer and a softmax layer to produce

a probability distribution over all candidate frames plus None.

Figure 4.3 shows the overview of this architecture, which we will call the PFmask model.

We will refer to the final score for artifact ai with respect to frame f j as Smask(ai, f j). The

loss function is defined as:

L = −
n

∑
i=1

log Smask(ai, f j∗), (4.6)

where f j∗ is the gold label for ai.

4.4.6 Learning from Definitions

The challenge for our task is obtaining information about the intended function of a

physical artifact. We observed that this information is often described in the dictionary

... ℒBERT Linear

...

[CLS] A knife can be used to . [SEP][MASK]

[CLS] If I had a knife , I could . [SEP][MASK]

Figure 4.3: Overview of the PFmask model. Each pink block that is fed into BERT represents
a sentence template for a given artifact.
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definition of an artifact, although it can be expressed in many different ways. For example,

the first sense definition in WordNet for knife is “edge tool used as a cutting instrument...”, and

for bus it is “a vehicle carrying many passengers...”. The definition often provides a short and

precise sentence that describes what the artifact is as well as what it is typically used for.

FrameNet also provides a definition for each frame. For example, the definition of the

Cutting frame is “An Agent cuts a Item into Pieces using an Instrument”. In the previous

section, we exploited both frame and lexical unit definitions for the frame identification

task in a model FIDO (Jiang and Riloff [71]) that assesses the semantic coherence between

the meaning of a target word in a sentence and a candidate frame. Here, we hypothesized

that a model could potentially learn the semantic relatedness between the definitions of a

physical artifact and the frame that describes its typical function.

To investigate this idea, we used the BERT model [43] as the base of our architecture

and fine-tuned BERT for our task using both dictionary definitions of artifacts and frame

definitions from FrameNet. Figure 4.4 shows the overview of this architecture, which we

call the PFde f model. Each large green block represents an artifact ai paired with one of

the candidate frames. We encode WordNet’s definition of the artifact as the first input

sequence and the frame’s definition from FrameNet as the second input sequence to BERT.

We use the last hidden vector of the [CLS] token as the output. For each artifact ai, we have

n+ 1 such pairs where n is the number of candidate frames and 1 refers to the None option.

On top of BERT’s output, we apply a linear and a softmax layer to produce a probability

distribution over all candidate frames. We will refer to the final score for artifact ai with

respect to frame f j as Sde f (ai, f j). The loss function is defined as:

L = −
n

∑
i=1

log Sde f (ai, f j∗), (4.7)

[CLS] [SEP] [SEP]

Artifact     Definition Frame     Definition...

[CLS] [SEP] [SEP]

Artifact Definition Frame     Definition

ℒLinear

...BERT

Figure 4.4: Overview of the PFde f model. Each green block that is fed into BERT represents
an artifact and one of the candidate frames.
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where f j∗ is the gold label for ai.

4.4.7 Joint Model

Our final model combines the idea of using both definitions and masked sentence

patterns. Figure 4.5 depicts the combined Pde f+mask model. The left part is the PFde f model

which estimates the relatedness between artifact and frame definitions. Its output is a ma-

trix of dimension (# of frames, hidden vector size). The right part is the PFmask model, which

predicts the most probable frame for an artifact using our masked patterns. It produces a

single output vector of dimension (1, hidden vector size). We broadcast it across the rows

to have the same dimension as (# of frames, hidden vector size) and then we concatenate

the matrices of both models to pass through a linear layer before computing the loss. The

model uses fine-tuning to jointly learn all parameters so that information from both models

will optimally contribute to the final prediction.

4.5 Evaluation
4.5.1 Experiment Settings

Our gold standard data set contains 938 artifacts that are each paired with one frame

that represents its most prototypical use. We set aside 20% (188) of the data as a devel-

opment set and used 80% (750) as the test set. We evaluated all of the learning models

by performing 5-fold cross validation on the test set. We use the pre-trained uncased

Linear Cutting

...B
ER
T

...

...B
ER
T

...

knife

Figure 4.5: Overview of the PFde f+mask model.
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BERT-base model with the same settings as Devlin et al. [43] and fine-tuned BERT on the

training data. We set the max sequence length as 200, batch size as 1, learning rate started

at 2e-5, and train for 10 epochs. All reported results are averaged over 3 runs. We report

overall accuracy as well as precision, recall and F1 scores macro-averaged over the 43 class

labels (42 frames + None).

4.5.2 Results

The first four rows in Table 4.9 show the performance of our four baseline methods.

ConceptNet and the Co-occurrence model produced the lowest F1 scores. We see that

ConceptNet has better precision but low recall because only about 1/3 of the artifacts in

our data set has a UsedFor relation defined in ConceptNet. We also tried adding the Ca-

pableOf relation, which is defined as what an item can do, but it is even more sparse than

UsedFor and combining both relations only marginally increased recall. The performance

of COMET shows that COMET does indeed improve upon the coverage of ConceptNet,

although it sacrifices some precision. We also tried using the beam-5 and greedy settings of

COMET, which produced higher precision but lower recall and F1 scores.

Compared to COMET, the Co-occurrence baseline has higher accuracy but a much

lower F1 score. The explanation is that the Co-occurrence model performs much better

on frames that are associated with artifacts that are frequently mentioned in the corpus

than for frames associated with less frequent artifacts. This is intuitive because, in general,

we expect to extract a more representative sample of activities when we have more data.

This phenomenon (accuracy much higher than F1) can also be observed in the MLM

model which uses a pre-trained language model that learns from large corpora, so it is

Table 4.9: Experimental results for different models.

Model Acc Pre Rec F1

ConceptNet 17.5 33.6 13.5 16.4
Co-occurrence 31.9 24.1 23.9 19.9
COMET 30.7 29.7 35.6 28.2
MLM 42.8 29.5 33.8 28.2

PFmask 58.5 35.7 36.5 35.4
PFde f 74.7 63.5 57.6 59.3

PFde f+mask 76.8 65.2 61.1 62.4
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not surprising that Co-occurrence and the MLM model behave similarly. In contrast,

ConceptNet and COMET behave more consistently across the set of frames.

The bottom two sections of Table 4.9 show the results for our new models, which were

trained specifically for this task. The PFmask model achieves 58.5% accuracy and a 35.4%

F1 score, which outperforms all of the baselines. The PFde f model performs substantially

better, achieving 74.7% accuracy and a 59.3% F1 score. This result demonstrates that the

definitions of the artifacts and the frames provide valuable information that a learner

can benefit from. The last row shows the performance of the combined model, which

performed better than the individual models. This model saw additional gains in both

precision and recall, increasing the accuracy from 74.7% to 76.8% and the F1 score from

59.3% to 62.4%.

4.5.3 Analysis

4.5.3.1 Training Size

To understand the degree to which the number of training instances for each frame

correlated with performance, we divided the frames into two sets: high frequency frames

assigned to ≥ 15 artifacts and low frequency frames assigned to < 15 artifacts. The results

are shown in Figure 4.6 with the F1 scores from the PFde f+mask model displayed on the

Y-axis.

We conclude that frames with more training instances generally showed better perfor-

mance, so our model would likely further improve given more training data.

Figure 4.6: F1 scores for high and low frequency frames.
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4.5.3.2 Compare PFmask and PFde f

Table 4.10 shows some examples of output from the PFmask and PFde f models to com-

pare their behavior. The correct predictions appear in bold. Both models are correct for

example 1. For example 2, only the PFmask model is right, which indicates that the masked

pattern can be more useful than the definition sometimes. For examples 3 and 4, PFde f was

correct and PFmask was wrong. The PFmask model sometimes generates frames representing

functions that are true but tangential. For example, beds do support us and helmets

are worn, but these functions do not sufficiently characterize the objects (e.g., chairs also

support us but are not typically used for sleeping, and jewelry is also worn but not used

for protection). For example 5, both models are wrong – the correct frame is Removing.

Though both are wrong, the PFde f model produces a more reasonable answer than the

PFmask model.10 We also observed that the MLM baseline sometimes produces seemingly

random answers that are hard to explain.

4.5.3.3 Frames Labeled as None

We investigated the 83 instances that were labeled as None to see what kind of artifacts

fell into this category. The biggest cluster of related artifacts were 17 types of fabric, such

as linen, silk and canvas. FrameNet does not include a frame for materials of this kind,

probably because they are an ingredient for making clothes rather than tools themselves.

Artifacts like toy were also labeled as None presumably because toys are used in a general

way (for play). This category also included some artifacts not tied to a single prototypical

function but commonly used for many purposes (e.g., computer, laptop).

Table 4.10: Sample output of PFde f and PFmask models. The correct predictions are in bold.

ID Artifact PFmask PFde f

MASK ✓ DEF ✓ 1 scissors Cutting Cutting
MASK ✓ DEF ✗ 2 hydrant Cause_fluidic_motion Cause_temperature_change
MASK ✗ DEF ✓ 3 bed Supporting Sleep
MASK ✗ DEF ✓ 4 helmet Wearing Protecting
MASK ✗ DEF ✗ 5 snowplow Hunting Self_Motion

10In fact, snowplow can also refer to a skiing action, although WordNet does not contain that word sense.
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4.5.3.4 Merging Lexical Units

When selecting frames to represent the prototypical functions of physical artifacts, we

observed that some frames in FrameNet share similar meanings (e.g., Reading_activity and

Reading_perception) or related functions (e.g., Create_representation and Recording). How-

ever, these frames often have complementary sets of lexical units.

Since our baselines (ConceptNet, COMET, Co-occurrence, and MLM) rely on the lexical

units of frames to make predictions, increasing the coverage of lexical units can be bene-

ficial. So we manually clustered frames that share a related definition with our 42 chosen

frames and merged their lexical units. Table 4.11 shows the cluster for which the lexical

units are merged.

Table 4.12 shows the experimental results for our baselines with and without merg-

ing the lexical units (lexical units are only used by the baseline models). The first four

rows show results without merging lexical units and the last four rows show results with

merged lexical units (same numbers reported in Table 4.9). We can see that merging lexical

units from frames in Table 4.11 helps improve both the precision and recall. It also indicates

Table 4.11: Clustered frames. The left column are from our pre-selected frames. The right
column are related frames in FrameNet providing complimentary lexical units.

Primary Frame Clustered Frames

Agriculture Food_gathering, Growing_food, Planting
Attaching Connectors
Cause_fluidic_motion Cause_to_be_wet
Cause_harm Attack, Weapon
Cause_motion Cause_to_move_in_place
Cause_to_fragment Grinding
Commercial_transaction Commerce_buy, Commerce_sell
Competition Exercising
Containing Containers
Cooking_creation Apply_heat
Create_representation Recording
Cure Recovery
Hunting Taking_captive, Trap
Inhibit_movement Immobilization
Light_movement Location_of_light
Make_noise Cause_to_make_noise, Noise_makers
Perception_experience Perception_active, Cause_to_perceive, Information_display
Reading_activity Reading_perception
Removing Emptying
Self_motion Vehicle, Ride_vehicle, Operate_vehicle
Supporting Posture
Wearing Body_decoration, Clothing, Accoutrements, Clothing_parts
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Table 4.12: Experimental results with and without merging lexical units.

LU Merge Model Acc Pre Rec F1

Before

ConceptNet 15.7 32.2 12.3 14.5
Co-occurrence 22.5 19.5 17.5 14.8
COMET 23.9 24.5 28.3 21.4
MLM 26.1 24.1 28.5 21.4

After

ConceptNet 17.5 33.6 13.5 16.4
Co-occurrence 31.9 24.1 23.9 19.9
COMET 30.7 29.7 35.6 28.2
MLM 42.8 29.5 33.8 28.2

that a more appropriate set of trigger words should potentially benefit the task.

4.6 Related Work
Researchers have known for a long time that commonsense knowledge is essential

for natural language understanding [30, 149]. Some of this work specifically argued that

commonsense knowledge about physical objects, including functional knowledge, plays

an important role in narrative text understanding [22, 83].

These observations have led to considerable work toward constructing commonsense

knowledge repositories. The Cyc project [84] built a large ontology of commonsense con-

cepts and facts over many years. More recently, ConceptNet [159] captures commonsense

knowledge in the form of predefined relations expressed in natural language words and

phrases. It was built from Open Mind Common Sense, a crowd-sourced knowledge project

[156], and later enhanced with other sources such as Wiktionary and WordNet [104].

Within the NLP community, a variety of recent projects have focused on trying to ac-

quire different types of commonsense knowledge, such as Forbes and Choi [54], Collell et

al. [35], Yang et al. [189] and Event2Mind [138]. Sap et al. [146] presented a crowd-sourced

commonsense reasoning data set called ATOMIC that focuses on inferential knowledge

related to events, which is organized as if-then relations. Bosselut et al. [16] later pro-

posed COMET, a transformer-based framework for automatic construction of common-

sense knowledge bases that was trained from ATOMIC and ConceptNet. Both ConceptNet

and COMET include a UsedFor relation that is relevant to our task, and we evaluate their

performance on our data set in Section 4.5.

Of relevance to this work, Jiang and Riloff [73] (Chapter 3) learned the prototypical
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“functions” of locations by identifying activities that represent a prototypical reason why

people go to a location. For example, people go to restaurants to eat, airports to catch a

flight, and churches to pray. We referred to the associated activity as a prototypical goal

activity and presented a semi-supervised method to iteratively learn the goal activities.

Our work is also related to frame semantics, which studies how we associate words and

phrases with conceptual structures called frames [51], which characterize an abstract scene

or situation. The Berkeley FrameNet project [5, 141] provides an online lexical database for

frame semantics and a corpus of annotated documents. Several efforts have enhanced

FrameNet by mapping it to other lexicons, such as WordNet, PropBank and VerbNet

[50, 114, 152]. Pavlick et al. [119] increased the lexical coverage of FrameNet through

automatic paraphrasing and manual verification. Yatskar et al. [191] introduced situation

recognition, which is the problem of producing a concise summary of the situation that

an image depicts. Similar to our work, they selected a subset of frames from FrameNet to

represent possible situations depicted in an image. Our work uses a subset of frames from

FrameNet to represent the prototypical functions for human-made physical artifacts.

There has been considerable work on the frame identification problem with respect

to FrameNet, especially since the SemEval 2007 shared task [6]. Johansson and Nugues

[74] used a SVM classifier to disambiguate frames with hand-crafted features. Das et al.

[38] applied feature-based discriminative probabilistic (log-linear) models for frame iden-

tification. Hermann et al. [65] presented a method using distributed representations of

predicates and their syntactic context by mapping input representations and frame rep-

resentations to a common latent space using the WSABIE algorithm [180]. Hartmann

et al. [63] built a simplified model based on Hermann et al. [65] and achieved comparable

results. They also released a new FrameNet-annotated test set based on user-generated

web text from Yahoo! Answers. Yang and Mitchell [188] integrated a bidirectional LSTM

neural network and a relational network to jointly decode frames.

More recently, Botschen et al. [18] brought in multimodal representations grounded

in images to improve frame identification. Peng et al. [120] proposed a joint inference

formulation that learns semantic parsers from multiple datasets.

In contrast to the previous models, our FIDO model does not rely on syntactic fea-

tures. We assess semantic coherence directly from the input sentence and definitions in
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FrameNet.

Another line of related work is learning embeddings from dictionary definitions. It has

been shown that neural networks can extract semantic information from dictionary defini-

tions [15, 79]. Previous work in word sense disambiguation [12, 68] has demonstrated that

providing pre-trained language models with sense definitions (glosses) can be effective.

Yong and Torrent [192] also used the sense definitions of lexical units for their research on

frame induction. Our FIDO model adopts a similar architecture as Huang et al. [68], but

we focus on the frame identification task and we explore the use of both lexical unit and

frame definitions for the task.

4.7 Conclusion
We introduced the new task of learning prototypical functions for human-made phys-

ical artifacts, and used a subset of frames from FrameNet to represent the set of common

functions. We also presented a manually annotated data set of 938 physical artifacts for

this task. Our experiments showed that a transformer-based model using both artifact

and frame definitions as well as masked pattern predictions outperforms several baseline

methods. In future work, we hope to show the value of functional knowledge about objects

for sentence-level understanding tasks as well as narrative document understanding.



CHAPTER 5

IDENTIFYING OBJECT USE IN SENTENCES

In the previous chapter, we have argued that physical objects play an important role in

daily life. People use them for different purposes; for example, we use knives for cutting,

cars for transportation, and books for reading. Most human-made physical artifacts were

created for a specific purpose, and that commonsense knowledge about an object’s proto-

typical function is essential for natural language understanding. For example, “she finished

the puzzle” and “she finished the cigarette” implicitly refer to different actions associated with

puzzles (solving) versus cigarettes (smoking). Similarly, humans interpret “he used a gun”

as a shooting but “he used a knife” as a stabbing based on our knowledge of guns and knives.

In this chapter, we want to demonstrate how can we apply the prototypical function in

context understanding.

Chapter 4 presented a method to learn the prototypical functions for physical artifacts

using pretrained language models, with the goal of producing a commonsense knowledge

resource for physical objects. However, an open question is how to apply this knowledge

for sentence understanding.

It would be risky to assume that objects are always used in the most typical way

because objects can be used in atypical ways too. For example, “Max used the knife to open

the bottle” probably means that Max popped the top off the bottle with the knife, not that

Max cut the bottle. But as we will discuss in Section 5.2, we found that physical artifacts

are used in the prototypical way most of the time (96%), so it is a very good assumption.

A much bigger problem for applying knowledge of prototypical functions is that phys-

ical objects are often mentioned when they are not used at all! For example, the sentences

below mention a knife, but the knife is not being used:

(a) He put the knife in the dishwasher.

(b) She found a knife in the woods.



65

(c) The knife fell off the table.

(d) A good pocket knife costs $100.

In addition, some sentences suggest that a physical object will be used, although it has

not been used yet. For example, Mary aims to acquire a knife through various actions in

the sentences below:

(e) Mary got a knife from the drawer.

(f) Mary asked John for a knife.

(g) Mary purchased a chef’s knife.

When reading these sentences, people naturally infer that Mary intends to use the knife,

most likely in the typical way (i.e., to cut things). We believe that NLP systems should

also make these predictive inferences to “read between the lines” during narrative text

understanding. For example, consider the sentence “The fish was too big for the freezer, so

Mary got a knife.”. Human readers would assume that Mary used the knife to cut the fish

into smaller pieces, even without any explicit mention of cutting.

We propose a new NLP task, Object Use Classification, to classify the usage status of

physical objects mentioned in sentences with respect to three categories: Used, Anticipated

Use, and No Use. Our first goal is to identify sentences that state or imply that an object

was used (Used) to enable prototypical function inferences when the action is implicit.

Our second goal is to identify sentences that describe actions which suggest someone’s

probable intent to use the object (Anticipated Use) to enable second-order prototypical

function inferences. Finally, identifying sentences where there is no use of a mentioned

object (No Use) is important to recognize when prototypical function inferences should

not be applied. We introduce a new object use dataset for this task with gold standard

human annotations of sentences that mention physical objects. We found that all three

use categories are common: our annotators labeled 45% of the sentences as Used, 28% as

Anticipated Use, and 27% as No Use.

We explored several methods to tackle this task. First we applied prompting methods

using two large language models to evaluate a zero-shot generalization approach, but the

results were mediocre. Next, we fine-tuned a transformer-based model, which yielded
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much better performance. Finally, we added two data augmentation techniques, synonym

replacement and back translation, and also provided exemplar sentences associated with

the object’s prototypical function frame. Our experimental results show that the complete

model achieves good performance for this task.

5.1 Motivation
Actions involving physical objects are often left implicit in natural language. In many

cases, these actions do not need to be explicitly stated because they can be easily inferred by

people using our knowledge about physical objects. Early NLP research recognized this

need for commonsense knowledge about physical objects (e.g., Burstein [22]) and some

efforts have been undertaken to compile such knowledge, including ConceptNet [159],

which contains a “UsedFor” relation that captures possible uses for an object expressed in

natural language, and our previous work introduced in Chapter 4 that learns to associate

physical objects with FrameNet frames describing their prototypical uses.

However, a crucial question is when to apply this knowledge in sentence understand-

ing. We claim that NLP systems must be able to distinguish between (1) sentences that

mention a physical object and state or imply that the object was or will be used, and (2)

sentences that mention a physical object but the object was not used. For example, the

sentences “Mary read the book” and “Mary enjoyed the book” both imply that the book was

used (read), but “Mary dropped the book” does not mean that the book was used, only that

Mary was carrying it. We found that about 73% of sentences that mention a physical object

in our data set (see Section 5.2) suggest that the object was (45%) or will be (28%) used.

For the other 27% of sentences that mention a physical object, the object was not used

at all. Consequently, we argue that an important task for understanding sentences about

physical objects is object use classification.

A second question relates to the applicability of “prototypical” functions for objects:

when an object is used, how often is it used in the prototypical way? In our dataset (Section

5.2), we found that when a sentence mentions or implies the use of an object, 96% of these

sentences correspond to the prototypical use for the object. Only 4% of these sentences

suggest that an object was used in an atypical way. These results indicate that an effective

object use classifier can go a long way toward enabling NLP systems not only to infer
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whether an object was used, but also how an object was used, even when that action is not

explicitly stated.

In this chapter, we tackle the problem of object use classification and define three

categories of object use: Used, Anticipated Use, and No Use. In the next section, we define

these three categories and explain our motivation for them, and we present a new object

use dataset for this task.

5.2 Dataset Creation
Since we are tackling a new task, we created a new TOUCAN (Textual Object Use

ClAssificatioN) dataset with gold standard human annotations. Our primary goal was to

obtain human judgements for sentences that mention a physical object indicating whether

the object was or will be used, or not. But a second goal was to better understand how

often objects are used in a prototypical way, as opposed to an atypical way. So we obtained

additional human judgements for the sentences in which an object was or will be used and

asked the annotators to determine whether the use corresponds to the object’s prototypical

function. We leveraged the results of prior work that studied physical objects and their

prototypical functions so as not to reinvent the wheel:

• Physical Objects: We use the list of physical objects introduced in Chapter 4 Sec-

tion 4.2.3 (Jiang and Riloff [72]). The human-made physical objects were extracted with

sense definitions from WordNet [104], and a concreteness dictionary [21] was used to filter

out abstract terms. The list contains 938 human-made physical object terms.

• Sentence: Then we extracted sentences containing these physical objects from the

Spinn3r corpus [24], which consists of 44 million blog posts. In order to get a uniform

distribution of different physical objects, we randomly sampled 4 sentences (or fewer if

not enough) for each physical object. This produced a set of 2,460 sentences in total.

5.2.1 Human Annotation

5.2.1.1 Object Use Categories

First, we presented two people with a physical object term, a sentence that mentions

the object, and the WordNet definition of the object.1 We asked the annotators to select one

1We manually identified the WordNet definition corresponding to the physical object sense of the term.
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of these four categories:2

1. Used: The sentence describes 1) an action in which the object is/was being used (by

the writer or someone else), or 2) an action that directly resulted from the use of the object.

2. Anticipated Use: The sentence states that 1) the object will be used in the future, or

2) implies that someone will presumably use the object.

3. No Use: Neither Used nor Anticipated Use.

4. Wrong Sense: The given definition of the object term is different from its meaning

in the sentence. (This option was provided to flag sentences in which the term’s meaning

is not its physical object sense. We do not include these sentences in our dataset.)

5.2.1.2 Prototypical Use Annotations

In Chapter 4, we proposed that most human-made physical artifacts have a proto-

typical function (i.e., the intended purpose of the object). We selected 42 frames3 from

Framenet v1.7 [141] to represent actions that are common functions of physical artifacts.

Table 5.1 shows a few physical objects and their prototypical function frames.

To better understand how often objects are used in a prototypical way as opposed

to an atypical way, we collected additional human judgements. If an annotator selected

Table 5.1: Examples of objects and their prototypical function frames.

Frame Artifact Examples

Wearing hat, shirt
Containing basket, luggage
Self_motion bicycle, yacht
Protecting armor, helmet
Supporting chair, scaffolding
Cause_harm cannon, spear
Perception_exp earphone, eyeglass
Make_noise bell, violin
Cause_motion engine, propeller
Cutting knife, scissors

2The annotation guidelines can be found in Appendix D.

3See Section 4.2.2 Table 4.1 for all 42 frames.
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Used or Anticipated Use, we also asked the annotator whether the use of the object most

likely corresponds to its prototypical function (based on the gold frame in our dataset).

The annotator was shown the prototypical function frame for the object, and asked to

select Yes or No as to whether the frame correctly characterizes the use of the object in the

sentence. The last column in Table 5.2 shows the prototypical function frames, followed

by the annotated Yes (✓) or No (✗). For example, in sentence (3) of Table 5.2, a toothpick is

typically used to remove food that is stuck between our teeth, but here it is used to hold

sausage and olives together so this sentence represents an atypical use for a toothpick.4

To prepare the annotators, we provided them with detailed annotation guidelines to

familiarize them with the task. Deciding whether the prototypical function frame is cor-

rect requires knowledge of FrameNet frames, so we also asked them to read FrameNet’s

definitions and exemplar sentences for each relevant frame. We randomly shuffled the

physical objects before presenting them to the annotators. The pairwise inter-annotator

agreement using Cohen’s kappa for the 3 object use categories was 0.71, and the simple

agreement rate (percentage of agreement) for the Yes/No prototypical function question

was 0.92.

To create the final set of gold standard labels, we had the annotators adjudicate their

disagreements. This process produced 2,123 sentences annotated with one of the Used,

Anticipated Use or No Use label. The All Cases row of Table 5.3 shows the distribution of

Table 5.2: A sample of the annotated examples. The physical objects are marked in red.
The second column shows the annotated use category. The third column shows the gold
prototypical function frame for the object followed by ✓or ✗. The ✓means the frame is
consistent with the use of the object in the sentence, otherwise ✗.

Sentence Use Category Prototypical Function

(1) We took a speedboat up the river to the village.
Used

Self_motion ✓

(2) He promptly walked over to his mattress and laid down. Sleep ✓

(3) I had sausage slices wrapped around olives, held together with a toothpick . Removing ✗

(4) I quickly went to the bathroom and got more ammo .
Anticipated Use

Cause_harm ✓

(5) All my new cookware will be put to use with these new recipes! Cooking_creation ✓

(6) I got measured for my tuxedo for Dad ’s wedding today. Wearing ✓

(7) Nope , it also hit my left headlight and broke it.
No Use

-

(8) At one point, I saw a high heel shoe . -
(9) I promptly threw the brochure in a corner to collect dust. -

4One could argue that toothpicks have multiple common functions, but we defined only one prototypical
function for each object in their work.
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Table 5.3: Annotated data statistics. The “Prototypical” row shows the number of ex-
amples in which the prototypical function of the object is consistent with its use in the
sentence.

Used Anticipated Use No Use

All Cases 964 583 576

Prototypical Use 935 560 -

the 3 categories. The Used category accounts for 45% of the sentences, with Anticipated

Use and No Use each making up about 27% of the data.

The Prototypical Use row shows the prototypical use results. The annotators deter-

mined that objects were used in their most prototypical way in 97% (935/964) of the Used

sentences and in 96% (560/583) of the Anticipated Use sentences. This data suggests that

if we had a perfect object use classifier, we could infer how an object was used with 96.6%

accuracy simply by assuming its prototypical function.

5.3 Object Use Classification
We explored several approaches to tackle this task. We first present a transformer-

based model fine-tuned solely on our gold standard training sentences. Then we present

a method that takes advantage of two commonly used data augmentation techniques,

synonym replacement and back translation. Finally, we also show that our model further

benefits from prior knowledge of the object’s prototypical function by incorporating the

exemplar sentences associated with its function frame.

5.3.1 Task Definition and Base Model

We model our task as a 3-class classification problem. Given a sentence, and an object

mentioned in the sentence, the task is to determine if the object has been used, has an

anticipated use in the future, or has no stated or implied use.

We build our model based on RoBERTa [94]. For our base model, we use the sentence

as the input sequence into the model, and use the last hidden vector representing the object

(if there is more than one token, we compute the average of all tokens) as output, and then

pass it through a linear classifier to predict the label.
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5.3.2 Synonym and Hyponym Replacement

Our physical object list originated from WordNet. To increase the number of training

sentences, we created copies of each original training sentence where the object term is

replaced by one of its synonyms or hyponyms in WordNet. Specifically, for each object

that has a WordNet synset, we first extract all the lemmas belonging to the same synset

and also traverse one level down in WordNet’s hierarchy to extract the lemmas of its

direct hyponyms. For example, the furniture term sofa belongs to the synset sofa.n.01,

which also contains couch and lounge. Suppose its direct hyponyms are daybed, divan,

and loveseat. Then we have a list of 5 new object terms. For each training sentence that

mentions a sofa, we replace the word sofa with its synonyms or hyponyms, generating 5

new training examples with the same label. In general, we use all of the synonyms and up

to 5 hyponyms (if there are more than five then we randomly select five).

5.3.3 Back Translation

Back translation [151] is a widely used data augmentation technique, which automati-

cally generates new training examples by translating a sentence to another language and

then translating it back, as illustrated in Figure 5.1. The technique aims to produce diverse

paraphrases of the original sentence. Its effectiveness has been shown for downstream

tasks such as text classification [185] and question answering [95].

Table 5.3 shows that the label distribution in our dataset is roughly 2:1:1. Though

Translate to Chinese

!"#$%

Chinese

A

A

文

Figure 5.1: An illustration of how back-translation works.5
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this imbalance reflects the actual distribution of these categories, we hypothesized that

the model would perform better with a more balanced distribution of class labels. So

we performed back translation on the training examples labeled with Anticipated Use and

No Use, augmenting these categories to be roughly the same size as the Used category.

For back translation, we use the Helsinki-NLP English to Chinese and Chinese to English

transformer-based machine translation system [170].

5.3.4 FrameNet Exemplars

Our annotation results suggested that when objects are used, they are almost always

used in the prototypical way. So for each object, we utilize the prototypical function

frame in the gold standard dataset as introduced in Chapter 4 as prior knowledge to

recognize whether the sentence describes a relevant situation. Specifically, we extract the

frame’s exemplar sentences from FrameNet, which are the annotated sentences associated

with a lexical unit that triggers the frame. For example, the Sleep frame contains examplar

sentences such as “I was exhausted, and slept for two hours”, “Well, better get some shut-eye”,

etc. We concatenate all of the exemplar sentences for the frame as one sequence, then pair

it with the sentence containing this object as the input to the RoBERTa model.

5.3.5 Complete Model Architecture

Figure 5.2 shows an overview of the full architecture for our learning process. For

simplicity, we call the model TOUCAN as well. First we use synonym/hyponym replace-

ment to augment the original training set. Then we apply back translation to all of the

sentences labeled as Anticipated Use or No Use to generate more sentences, and add them

to the training set. When applying back translation, for each sentence, we generate only

one new sentence from the translator.

Finally, for each sentence in the training set, we extract the exemplar sentences from

FrameNet corresponding to the object’s prototypical function frame. The exemplar sen-

tences are concatenated and given to RoBERTa along with the original sentence as input.

Then we send the last hidden vector of the object into a linear classifier on top of the

5Figure adapted from Beddiar et al. [10].
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<s>  I lay on the couch.  </s>   I was exhausted and slept for two hours…  </s>
...

Syn Replacement

I lay on the bed.

Back-translation

Ø I lay on the couch.
v I lay on the bunk.

• I rested on the bed.
Ø I sit on the couch.
v I lay in the bunk.

Object: bed
Prototypical function: Sleep

Locate Sleep frame in FrameNet
Retrieve and concatenate exemplar sentences

RoBERTa

WordNet

Neural
Translator

Anticipated Use No UseUsed

Classify into one of 3 categories:

Figure 5.2: An illustration of the TOUCAN object use classification model.

RoBERTa model.6 If there are multiple tokens, we compute their average.

5.4 Evaluation
We split our gold standard data set into roughly 70% for training, 15% for development

and 15% for testing. We also made sure that the objects in the test set do not appear in the

training set. Our fine-tuning framework is based on the RoBERTa-base model [94]. For

the hyper-parameters, we used a max sequence length of 192, a batch size of 8, learning

rate initialized as 2e-5, and train for 15 epochs. Each result is averaged over three runs

with different random seeds. We report overall accuracy as well as precision, recall and F1

scores macro-averaged over the 3 classes.

5.4.1 Prompting Baseline

Recent advances in pre-trained language models have demonstrated their ability to

attain zero-shot generalization on different downstream tasks [20]. Specifically, prompting

has become a widely used technique in natural language processing. It works by recasting

NLP tasks in the form of a natural language response to a natural language input. To see

how well this approach can work for our task, we explore prompting with two language

models: GPT-2 [133] and T0++ [145]. T0++ is an encoder-decoder model that has been

trained on a collection of downstream tasks such as question answering and summariza-

tion, with multiple prompts per dataset. We cast our problem as a textual entailment task

6In rare cases, the object no longer exists in the sentence after back translation. In this case we use the
vector of the first token in the sentence.
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and use the same set of prompts in [145]. For example, one template is:

Suppose [premise]. Can we infer that “[hypothesis]”? Yes,

or no?

Since our task is to distinguish between three different categories (Used, Anticipated Use,

and No Use), we created a two-template pipeline to obtain the prediction. As an example,

consider the sentence “John finished the watermelon with the spoon”, where the spoon is the

object in question. Two templates would be generated:

T1: Suppose John finished the watermelon with the spoon. Can

we infer that “the spoon has been used”? Yes, or no?

T2: Suppose John finished the watermelon with the spoon. Can

we infer that “the spoon will be used in the future”? Yes,

or no?

If the output for T1 is Yes, it means the prediction is Used. If the output for T1 is No

but for T2 is Yes, it means the prediction is Anticipated Use. Otherwise the prediction is No

Use. Since the T0++ model has been fine-tuned with the prompt templates, it will always

predict Yes or No as the output. However the GPT-2 model can predict other tokens as the

next word. So for GPT-2, we compare the probability score for the Yes and No tokens and

choose the one that is higher. We report results averaged over all templates.

5.4.2 Results

Table 5.4 shows our experimental results. As a baseline, the first row shows that

random labeling (assigning each label with the probability of 1/3) achieves 30.0% F1. The

next two rows show the results for the prompt-based methods. The GPT-2 model predicts

No much more frequently than Yes and most predictions fall into the No Use category.

It very rarely predicts Anticipated Use. This produces a low F1 score of 18.5%. T0++

also suffers from low recall for Anticipated Use, but it is substantially better than GPT-2,

achieving 46.0% accuracy and 43.3% F1 score.

The next section of Table 5.4 shows the results for our fine-tuned models. Using the
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Table 5.4: Object use results across models.

Model Acc Pre Rec F1

random 31.0 30.5 30.2 30.0

GPT-2 30.1 24.6 31.9 18.5
T0++ 46.0 57.7 46.6 43.3

TOUCANbase 65.8 64.8 64.1 63.6
+Synonyms 70.0 69.4 68.2 68.3
+BackTrans 72.0 71.6 69.9 69.7
+Syn&BackTrans 71.9 71.5 70.1 70.3
+Exemplar 70.5 69.4 67.5 67.4

TOUCAN 72.4 72.0 70.6 70.8

sentence alone (TOUCANbase) achieves 65.8% accuracy and 63.6% F1. Each of the following

rows adds one new component to the architecture to evaluate its contribution indepen-

dently (not cumulatively). The +Synonyms and +BackTrans rows show results for data

augmentation using synonym/hyponym replacement and back translation respectively

on top of the TOUCANbase model. We see that synonym/hyponym replacement increases

the F1 score to 68.3%, and back translation performs even better at 69.7%. When using both

synonym/hyponym replacement and back translation (row +Syn&BackTrans), the model

achieves over 70% F1 score.

The +Exemplar row shows the results when giving the sentence as well as FrameNet’s

exemplar sentences as a sequence pair to RoBERTa. Note that this model requires gold in-

formation about an object’s prototypical function. Compared to TOUCANbase, adding the

exemplar sentences increases the F1 score from 63.6% to 67.4%. The last row (TOUCAN)

shows the results when combining all of the elements together, which yields the highest

accuracy score of 72.4% and highest F1 score of 70.8%.

Table 5.5 shows the performance breakdown for each label. Here we only show T0++

for comparison with the fine-tuned models. A clear difference between T0++ and the

fine-tuned models is that T0++ labels far too many instances as No Use. The fine-tuned

models do a much better job at distinguishing the 3 classes. We can also see that both data

augmentation methods help improve recall, especially for the Used and No Use categories.
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Table 5.5: Results breakdown for each label.

Use Anticipated Use No Use

Pre Rec F1 Pre Rec F1 Pre Rec F1

T0++ 64.9 40.2 48.4 73.6 23.3 34.4 34.6 76.3 47.2
TOUCANbase 71.8 74.1 72.9 57.1 72.2 63.7 65.5 46.0 54.1

+Synonyms 72.9 78.4 75.5 64.6 72.2 68.2 70.6 54.0 61.2
+BackTrans 76.6 82.1 79.3 62.8 77.0 69.1 75.5 50.7 60.6
+Syn&BackTrans 74.0 80.6 77.2 67.2 73.8 70.3 73.3 55.8 63.3
+Exemplar 75.8 84.1 79.8 61.0 71.0 65.6 71.2 47.5 56.9

TOUCAN 75.1 80.8 77.9 66.1 74.2 69.9 74.8 56.9 64.6

5.4.3 Analysis

5.4.3.1 No Use Categories

Performance on the No Use category is lower than on the other categories, so we did

some manual investigation to better understand why. Table 5.6 shows some No Use ex-

amples that were incorrectly labeled by TOUCAN model. We see some clues that seem

potentially useful, such as prepositional phrases indicating that the object is not the main

focus (e.g., under the window, against the workbench). And “dropped” implies that the

object was passive (i.e., something happened to it). But we saw many different types of

No Use contexts. Focusing on this category could be an interesting direction for future

research.

5.4.3.2 Implicit Actions

We also conducted a manual analysis to see how common truly implicit actions are.

We randomly sampled 200 examples from the Used or Anticipated Use sentences in our

Table 5.6: A sample of No Use cases that were predicted incorrectly by the system. Our
TOUCAN model predicted Used for i., ii., and iii., and Anticipated Use for iv. and v.

Sentences

i. The couch was crammed under the window with the tv in the corner.
ii. Today I dropped my spectacles in the dog kennel again while getting my
crazy dog out.
iii. She laid out the smock on the wardrobe and moved over to me.

iv. I am now debating taking the cabinet back to Target and exchanging it.
v. Duo took a step back and leaned against the workbench .
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dataset and judged whether the main predicate explicitly described the action involving

the object. This was an informal study, but we judged nearly 30% (58) as having implicit

actions. Table 5.7 shows some sentences with implicit actions. We noticed a few common

categories and showed their frequencies in Table 5.8.

In 16 sentences, the main verb was underspecified, such as “use”. There were 16 light

verb constructions [172], in which the verb has little semantic content of its own. There

were 4 metonymic verbs [81, 173] such as “finish” and “start”. In 9 additional cases, the

main predicate did not describe the action, but it could be inferred from a prepositional

phrase (e.g., sentence 3 in Table 5.7). There are also 13 implicit examples that do not fall

into any of these categories.

Table 5.7: The predicate (target) for frame identification is in red. The physical objects are
in blue. The red frame represents the action explicitly indicated by the predicate. The blue
frame represents the prototypical action associated with the object, which people would
infer.

Sentence Frame Identification Function of Object

You stand on a street with a guitar
and a crowd will come.

Posture Make_noise

For best results , run the toothpick
from the inside out.

Cause_motion Removing

Wow, that woman on trombone
rocked it like nothing I’ve seen or

heard before.
Desirability Make_noise

I braved the heat with my shears
and headed for the front yard. No associated frame Cutting

When the aids came in and said she
had to use the bedpan , she threw
a fit.

Using Excreting

I grabbed my 7x50 binoculars but
the coyote has run away.

Manipulation Perception_experience

She had this spunky , schoolgirl-
theme outfit complete with ammo
backpack and skirt.7

Possession Wearing

7It is worth noting that the Wearing frame do contains a lexical unit “have on”. So it is possible to infer a
conceptual connection between Possession and Wearing.
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Table 5.8: Manual analysis on how common implicit actions are in a random sample of
200 sentences.

Implicit Type Count

Underspecified verb 16
Light verb 16
Metonymic verb 4
Prepositional phrase 9
Misc 13

5.5 Related Work
Commonsense knowledge has long been recognized as an essential part of natural

language understanding [30, 149, 183]. Some work specifically argued that commonsense

knowledge about physical objects is often used to make inferences and plays an important

role in narrative text understanding [22].

Recently, a variety of projects have focused on acquiring knowledge about physical

objects, including relative physical knowledge [54], relative spatial relations [35], location

knowledge [73, 187], and object affordance [122]. Jiang and Riloff [72] (Chapter 4) de-

veloped a method to learn the most typical way that people use human-made physical

artifacts, and used FrameNet frames as a representation for common object functions. We

created a dataset of physical objects annotated with their prototypical functions. Research

in this Chapter builds upon that work by developing a model for identifying the usage

status of physical objects mentioned in a sentence, which we argue is a necessary precursor

to applying prior knowledge about prototypical functions.

Recently, there have been efforts aimed at learning implicit information with pre-trained

language models. Weir et al. [178] explored using pre-trained masked language models to

capture implicit knowledge elicited from humans, which are so-called stereotypical tacit

assumptions. Geva et al. [56] created a question answering dataset consisting of questions

that require implicit multi-step reasoning skills, such as “Did Aristotle Use a Laptop?”.

They show that a large language model fine-tuned on related datasets without retrieval of

relevant knowledge performs far worse than humans, and high-quality retrieval makes the

model more effective in the reasoning process. Talmor et al. [168] trained language models

with automatically generated data sampled from existing knowledge sources. They show
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that language models can combine implicit knowledge encoded in their parameters with

explicit rules and facts, and further perform reasoning.

Our work also has ties to frame semantic parsing [6, 165], which is the task of automati-

cally extracting frame semantic structures from sentences based on the Berkeley FrameNet

project [5, 141]. The process begins with identifying frame-evoking words in the sentence

(target identification) and identifying the evoked frame for each target (frame identification

[18, 71]). However, one limitation of this setting is that it typically relies on the predicate

to predict the frame. For example, the sentence “Sam enjoyed the book” would not trigger

a reading frame because “enjoy” is not associated with reading in FrameNet. Our work

strives to identify this implicit action by recognizing that the book was used and then

applying the prototypical function associated with books.

5.6 Conclusion
We introduced a new NLP task, object use classification, which identifies whether an

object mentioned in a sentence has been used or likely will be used. We introduced a gold

standard dataset for this task and showed that all 3 categories (Used, Anticipated Use, and

No Use) are common in real sentences. Then we presented a transformer-based architecture

for this task that uses two types of data augmentation techniques (synonym/hyponym re-

placement and back translation) and also exploits exemplar sentences from FrameNet that

correspond to an object’s prototypical function. The resulting classification model achieves

reasonably good performance for this task, although there is room for improvement that

we hope will inspire future work on this problem.

Table 5.7 illustrates the potential for combining our new object use classification model

with commonsense knowledge about the prototypical functions of objects in order to im-

prove sentence understanding. Current NLP systems would typically characterize these

sentences based on the actions shown in Red, but we argue that the actions shown in Blue

are the inferences that humans make when reading these sentences. In future work, we

hope to put these pieces together to fully capture both the explicit and implicit meaning

behind sentences and the commonsense inferences that people naturally make when read-

ing sentences.



CHAPTER 6

PROTOTYPICAL FUNCTIONS FOR VISUAL

ACTIVITY RECOGNITION

In the previous chapters, we have shown that physical objects play an important role

in our daily lives. People use different tools to achieve different goals in all kinds of

situations. For example, we use a toothbrush to clean our teeth, a microwave oven to heat

food, and a camera to take photos. Chapter 4 introduced models that can learn functional

knowledge of physical objects. Chapter 5 showed that by using the prior knowledge of

functions of physical objects, NLP systems can better understand the implicit meaning of

a sentence. In this chapter, we will demonstrate the significance of functional knowledge

via a downstream computer vision task.

Physical objects play an important role in computer vision. There are well-established

computer vision tasks that aim to identify the objects in an image, such as object de-

tection [92] and object classification [42, 78]. Recently, attention has been paid to more

comprehensive image understanding, such as identifying the salient event depicted in

an image as well as relevant people and objects. Situation recognition [191] is the task

of producing a structured summary of an image that describes the main activity and the

entities that fill semantic roles for that activity. The task was originally defined using frame

structures from FrameNet [5, 141] as the activity representation. For example, given the

image shown in Figure 6.1, a system should identify a baking event (which is indexed in

FrameNet as a type of Cooking_creation activity), and recognize the corresponding semantic

role/value pairs associated with FrameNet’s Cooking_creation frame. Models for this task

usually follow a two-step pipeline: (1) predict a verb that describes the activity depicted

in the image, and (2) identify the entities associated with each semantic role. Previous

systems have relied solely on features extracted from the image and have not yet exploited

any external commonsense knowledge.
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(a) Input image.

BAKING

ROLE VALUE

AGENT MAN

FOOD COOKIE

FOODCONTAINER COOKIE SHEET

HEATSOURCE OVEN

PLACE KITCHEN

(b) Annotated activity and semantic roles.

Figure 6.1: Situation Recognition involves predicting activities with semantic role/value
pairs.

For this work, we focus on the activity recognition (verb prediction) part of the situation

recognition task. We hypothesize that (a) correctly identifying the activity in an image

strongly depends on recognizing the objects that appear in the image, and (b) explicit

commonsense knowledge about physical objects can also be beneficial. An intuitive ex-

tension to visual reasoning is that if an object appears in an image, especially when it is

used by a person, the activity depicted in the image is likely to be the prototypical function

associated with the object. For example, a woman holding a comb is probably brushing

her hair, and a man holding a cookie sheet (as shown in Figure 6.1) is probably baking.

We explore these hypotheses by creating a transformer-based model that incorporates

commonsense knowledge about the prototypical functions of physical objects for visual

activity recognition. Our experimental results confirm that correctly identifying the objects

in an image is very important for activity recognition, and we show that providing explicit

knowledge about the prototypical functions of objects can improve performance for this

task.

6.1 Visual Activity Recognition with Object Functions
Given an image, the visual activity recognition task predicts a verb that describes the

main activity in the image. Figure 6.2 shows the framework of our model called ARF

(Activity Recognition with Functions), which takes 3 sources of input: 1) the image, 2)

nouns corresponding to the objects in the image, and 3) the names of FrameNet frames

that describe the prototypical functions of the objects. We use the CLIP [134] model, which
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Transformer Encoder

Classification

Activity: Baking
Object

Knowledge

Object Detector

Image
Encoder

Text
Encoder

oven,
cookie,
tray, …

Objects:

Cooking_
creation, …Frames:

Figure 6.2: Overview of the ARF architecture.

has been pre-trained on both images and text, to generate an encoding for each of the

3 types of input. Finally, we give the concatenated representation vectors as input to a

transformer model that is trained to predict a verb for activity recognition.

6.1.1 Notation

The task can be denoted as given the ith image Ii (i = 1..n), the system should predict

the correct activity verb v∗i . The score for the jth candidate verb being the activity for image

Ii is defined as:

Pr(vj
i |Ii) =

exp(g(Ii, vj
i))

∑m
k=1 exp(g(Ii, vk

i ))
(6.1)

where g(·) is a function produced by our model for scoring the assignment of a verb to the

image, and m is the total number of candidate verbs. We use negative log likelihood as our

loss function:

L = −
n

∑
i=1

log Pr(v∗i |Ii) (6.2)

6.1.2 Object Recognition

Ideally, we would use an Object Detector to identify the objects in an image for our

experiments. However, the object detectors that are most readily available use categories
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that do not cover the range of object types that we need. For example, object detection

datasets often contain a number of animate objects such as people and animals. As an

alternative, we turned to image captioning systems. For our first set of experiments, we

used a state-of-the-art image captioning model called OFA [176] to generate 10 different

sentences that describe the image. We set beam size 10 and diversity 10. We then extracted

the nouns from these sentences to create a set of words that (hopefully) include the objects.

However, even though the image captioning system often generated reasonable cap-

tions, the most relevant objects were frequently omitted from the caption, or misidenti-

fied.1 Since the goal of our research is to determine whether adding explicit knowledge

about an object improves performance, we cannot truly assess the value of such knowledge

when we do not know what objects appear in the image. Developing better methods to

identify specific objects in an image is an important direction for future research in com-

puter vision. For now, we continued our investigation by performing additional experi-

ments with the gold nouns in the imSitu dataset. These experiments essentially evaluate

the impact of adding object knowledge when the objects have been perfectly identified by

an oracle.

6.1.3 Prototypical Function Knowledge

We obtained the knowledge of what an object is typically used for from the dataset

we created in Chapter 4 (Jiang and Riloff [72]). The data contains a list of physical objects

in the form of WordNet synsets [104], and each object is paired with a human-annotated

frame from FrameNet that represents its prototypical function. For example, knife is paired

with the Cutting frame.

For each object in an image, we aim to use its function frame to help with activity

identification. However, our prototypical functions and imSitu [191] used different subsets

of frames from FrameNet. We felt that it made sense to align them, so we used the inter-

frame relations provided by FrameNet to map our prototypical function frames to imSitu’s

frames.

Each frame relation in the FrameNet data is a directed (asymmetric) relation between

two frames. There are 9 different frame relations: Inheritance, Using, Perspective On, Sub-

1One likely reason is that the images are in low resolution and many objects are small, such as a pencil.
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frame, Precedes, Inchoative Of, Causative Of, Metaphor, See Also.2 Though some frame rela-

tions are more important for the purpose of alignment (e.g., Inheritance represents an IS-A

relation), we use all frame relations to maximize the number of matched frames.

For each imSitu frame, we create a mapping to all prototypical function frames that

are within one hop via any frame relation. Out of the 161 frames in the imSitu dataset,

74 frames can be mapped to at least one of our function frames. Some unmatched imSitu

frames include Giving, Judgment, and Discussion, which are activities that do not require

any tools or equipment. But there are also frames that should be matched but are not, e.g.,

frame “Attack” and “Killing” in the imSitu can not be mapped to “Cause_harm” frame. So

there is still room for improvement of a better matching mechanism. Finally, we associate

each object with its corresponding imSitu frames.

6.1.4 Activity Recognition Model

We use CLIP ViT-B/32 [134] as the backbone model to encode the image and text. For

each example, we first apply CLIP’s image encoder to produce an image feature vector.

Then we use CLIP’s text encoder to generate an embedding for each object (noun) and

average the object vectors. For each object, we also collect its prototypical function frames

and use CLIP’s text encoder again to generate embeddings for each frame’s name, then

average those vectors. If there is no object, or no associated frame, then we encode an

empty string.

Next, we build a transformer model consisting of 6 encoding layers and a classification

layer on top. As input, the model takes the concatenation of all 3 vectors (corresponding

to image, objects and functions). The classifier then selects the most probable action verb

from all 504 candidate verbs used in the imSitu dataset.

6.2 Evaluation
The imSitu data contains 126,102 images, with manually annotated activity verbs and

frame structures. We follow the same data split (train 75,702, development 25,200, test

25,200) as Yatskar et al. [191]. We report verb prediction accuracy on both the development

and test sets. When fine-tuning the transformer, we use batch size 32, hidden vector

2Detailed definitions can be found in Ruppenhofer et al. [141].
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dimension 512, AdamW optimizer with learning rate 1e-4 and train for 10 epochs.

6.2.1 Experimental Results

Table 6.1 compares our model with six previous methods described in Section 6.3. The

ARF row shows the performance of our basic model using only image input. Our model

performs a little better than previous systems, probably due to the CLIP model which

is quite good. Also, the other models are trained for the full situation recognition task,

whereas our model is trained solely for the verb prediction task.

The next two rows show results when adding embeddings for the nouns extracted

from the captioning system (nounsC) and when using the nouns as well as their function

frames (nounsC+func). The nouns alone produce just a tiny improvement, but adding the

function frames improves a bit more. We believe that these results are primarily due to the

limitations of the captioning system.

The last two rows in Table 6.1 show the performance when using the gold nouns

(nounsG) and when using the gold nouns plus their associated function frames (nounsG+func).

These results show a huge performance boost simply from correctly identifying all the

objects in the image. And providing the external knowledge about their prototypical

functions further improves performance. In the next section, we try to better understand

the role that objects play.

6.2.2 Analysis

Figure 6.3 shows some examples of how the functions of objects in the image can help

identify the main activity. Consider subfigure (a), we see a hand-held spoon in front of

the baby’s mouth; the baby is expressing their like or dislike by making a grimace; there is

some green substance (presumably food) both on the face and spoon. We don’t see a series

of continuous actions, yet we know it is a feeding event because of our commonsense

knowledge. Similarly for the other images in Figure 6.3, from the shields, we can infer

Protecting; looking at the canoe, we know it is Motion; and the knife is a good indicator for

Cutting.
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Table 6.1: Experimental results.

Model Dev Acc Test Acc

Yatskar et al. [191] 32.3 32.3
Cooray et al. [36] 38.0 38.2
Pratt et al. [126] 39.6 39.9
Suhail and Sigal [162] 43.2 43.3
Cho et al. [33] 44.4 44.7
Li et al. [86] - 45.6

ARF 46.2 46.4

ARF+nounsC 46.6 46.5
ARF+nounsC+func 46.9 47.2

ARF+nounsG 69.2 69.5
ARF+nounsG+func 72.0 71.9

(a) spoon→ Ingestion (b) shield→ Protecting

(c) canoe→Motion (d) knife→ Cutting

Figure 6.3: Object triggering function frames. The gold verbs are (a) feeding, (b) guarding,
(c) floating, and (d) slicing.
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6.2.2.1 Images with and without Objects

However, not all images contain “salient” physical objects. For example, imagine a

picture showing a man running on a trail. The man is wearing clothes, which usually

does not help with identifying the running activity (people generally wear clothes). In

order to tease apart the images with and without salient objects, we divided the dev set

into two subsets: one set (w/ Func) contains 8,957 images where at least one gold noun is

associated with a function frame, and the other set (w/o Func) contains 16,243 images for

which no nouns map to any frames. Since the gold annotations only provide semantic

role values that are associated with the main activity, it is safe to assume that the w/ Func

set of images would contain salient objects. Table 6.2 compares the performance of our

systems on each subset of data. We see that performance is nearly identical when only

using image features. Adding the gold nouns produces a big performance gain for both

groups, although it benefits the w/ Func subset a little more. When the function frame

knowledge is introduced, we see more separation: the images that depict physical objects

associated with functions benefit more from having external knowledge about functions.

This result confirms that the knowledge is beneficial in the expected way.

6.2.2.2 Objects with Functions Being Triggered

We plot the objects in the imSitu dataset that are associated with a prototypical function

in a word cloud as shown in Figure 6.4, where larger words have a higher frequency in

the dataset. We can see that there are a lot of vehicles and commonly used household

essentials.

6.2.2.3 Which Semantic Categories Matter?

The performance gap between ARF+nounsG and ARF is substantial, and we were

curious to understand what types of nouns contributed the most. So we conducted another

set of experiments on the dev set to identify certain types of semantic roles.

There are 190 different semantic roles in the data, but we are primarily interested in

understanding the importance of physical objects. So we coarsely grouped the semantic

roles into 3 categories roughly corresponding to People, Locations and Objects. To keep

things manageable, we identified the 16 most frequent semantic roles that appear in at

least 2,000 images and manually assigned them to the 3 categories. The People category
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Table 6.2: Comparing performance on images with and without objects that have function
frames.

Model w/ Func w/o Func

ARF 46.0 46.4
ARF+nounsG 70.4 68.5
ARF+nounsG+func 75.1 70.4

Figure 6.4: A word cloud of objects that are associated with a prototypical function.

includes agent, agentpart, victim, and coagent. The Locations category contains place and

destination. The Objects category contains tool, item, substance, object, container, and vehicle.

We disregarded a few semantic roles that are highly ambiguous (e.g., source can be both a

location and object).

Table 6.3 shows our experimental results. Each experiment collected all images con-

taining at least one instance of a relevant semantic role and then evaluated performance

on those images both with and without the gold annotated nouns. For example, the Objects

column shows that our model achieved 72.2% accuracy on the images that contain at least

one object when it was given the nouns. But performance dropped to 37.2% accuracy

on those same images without the nouns. In contrast, providing the gold nouns had much

less impact on the other sets of images, which contain People or Locations but not necessarily

Objects.
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Table 6.3: Performance with and without the nouns for specific semantic roles.

People Locations Objects

with Nouns 69.3 69.2 72.2
w/o Nouns 61.4 64.4 37.2

6.2.2.4 Salient Objects

Another challenge is how to find the “salient” objects that play important roles in the

image, and from which we have a better chance of identifying the main activity. We count

the number of physical objects (not in the People or Locations semantic category) for all

images. We find that nearly 40% of images are annotated with two or more objects. In our

ARF model, when there are multiple objects in the image, we simply use the average of

each object’s embedding, which could potentially be improved by giving more weight to

the most salient object. This issue may be even more important when using object detection

systems because they may identify more objects (the gold annotation only contains objects

that belong to a pre-defined semantic role)! This is an important issue to study in future

work.

6.3 Related Work
Commonsense knowledge about physical objects has long been recognized to be im-

portant for natural language understanding [22]. Within the NLP community, a variety of

recent projects have focused on acquiring and using different types of knowledge about

physical objects, including relative physical knowledge [54], relative spatial relations [35],

semantic plausibility [177] and object affordances [122]. The work most relevant to this

research is Jiang and Riloff [72] (Chapter 4), which developed a method to learn the most

typical way that people use human-made physical artifacts from text. We used FrameNet

frames as a representation for object functions and created a dataset of physical objects

paired with their prototypical function frames to evaluate the results. In this chapter,

we incorporate the prototypical function data into a transformer-based model for visual

activity recognition.

Visual reasoning tasks, such as visual question answering [3] and image captioning [193],

have been widely explored for understanding images and videos. Previous work has

proposed to use external knowledge for visual tasks, such as image classification [99],
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object detection [155], and visual question answering [184].

Situation recognition is a task of recognizing the activity depicted in an image, includ-

ing the people and objects involved in the activity and the roles these participants play.

Yatskar et al. [191] introduced the imSitu dataset, which associates images with a verb

that describes the main action, and a set of semantic roles derived from FrameNet [141].

They tackled this problem by first applying the VGG network [154] to extract features from

the image and then building a CRF model to jointly predict the verb and semantic roles.

Several research efforts have further explored this task. Suhail and Sigal [162] used a graph

neural network to capture the relations between semantic roles. Pratt et al. [126] used a

LSTM to jointly classify verbs and semantic roles. Cooray et al. [36] cast situation recog-

nition as a query-based visual reasoning problem and further handled inter-dependencies

between queries to overcome the sparsity issues of semantic roles. Recently, Cho et al.

[33] proposed a collaborative framework using two transformer modules, and Li et al. [86]

used contrastive learning to distinguish the correct activities from negative examples. All

of these prior efforts have relied solely on features extracted directly from the image. Our

work aims to show that explicitly providing commonsense knowledge about objects can

also be beneficial for visual activity recognition.

6.4 Conclusion
The prototypical functions of physical objects is a type of commonsense knowledge that

is important for NLP. In this work, we showed that it can be a useful source of information

for image understanding as well. Specifically, we tackled the situation recognition task by

building a transformer model that incorporates the functions of objects to predict the activ-

ity in an image. The experiments show that knowledge of the objects and their prototypical

functions can improve performance on this task. However, automatically recognizing the

objects in an image remains a challenge, and exploiting better object detection methods is

an important direction for future work.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, I present research on learning one type of commonsense knowledge

— prototypical functions — and demonstrate its importance for artificial intelligence tasks.

In this chapter, I will first summarize my research contributions, and then discuss the

future directions of this line of work.

7.1 Research Claims and Contributions Revisited
In Chapter 1, I made two research claims and a brief description of my research contri-

butions to support the claims. Here is a revisit of the claims, and I will demonstrate how

each chapter relates to them.

Claim #1: Commonsense knowledge about the prototypical functions can be learned

from large corpora and language models.

In Chapter 3, I introduced functional knowledge of locations, i.e., people go to different

places to engage in activities that reflect their goals. For example, people go to restaurants

to eat, libraries to study, and churches to pray. I referred to an activity that represents a

common reason why people typically go to a location as a prototypical goal activity. My

research learned functions for specific locations using a text corpus and semi-supervised

learning. First, I extracted activities and locations that co-occur in goal-oriented syntactic

patterns. Next, I created an activity profile matrix and apply a semi-supervised label prop-

agation algorithm to iteratively revise the activity strengths for different locations using

a small set of labeled data. I showed that this approach outperforms several baseline

methods when judged against goal activities identified by human annotators.

In Chapter 4, I introduced functional knowledge of human-made physical objects,

i.e., the typical way how people use the objects, which I referred to as its prototypical

function. For example, people use a knife for cutting, a car for transportation, and a bed
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for sleeping. The prototypical function of a physical artifact is a kind of commonsense

knowledge that we rely on to understand natural language. I introduced a new NLP task

of learning the prototypical uses for human-made physical objects. I selected frames from

FrameNet to represent a set of common functions for objects, and described a manually

annotated data set of physical objects labeled with their prototypical function. I also pre-

sented experimental results for this task, including BERT-based models that use language

model predictions from masked patterns as well as artifact sense definitions from WordNet

and frame definitions from FrameNet. My model outperforms several baseline methods,

including using an existing knowledge base.

Claim #2: Commonsense knowledge about the prototypical functions can benefit down-

stream artificial intelligence applications.

In Chapter 5, I proposed that commonsense knowledge about the typical functions of

physical objects allows people to make inferences during sentence understanding. For

example, we infer that “I enjoyed the book” means that I enjoyed reading the book, even

though the action is implicit. In the previous chapters, I have proposed methods to learn

the prototypical functions of physical objects in order to enable inferences about implicit

actions. But many sentences refer to objects even when they are not used (e.g., “The book

fell”). I argue that NLP systems need to recognize whether an object is being used before

inferring how the object is used. I defined a new task called Object Use Classification that

determines whether a physical object mentioned in a sentence was used or likely will be

used. I introduced a new dataset with human annotation for this task. The annotation

results demonstrate that when a sentence mentions or implies the use of an object, 96%

of the time, it corresponds to the typical function of the object. This shows that object use

classification combined with knowledge about the prototypical functions of objects has the

potential to yield good inferences about implicit and anticipated actions. I also presented

a classification model that exploits data augmentation methods and FrameNet when fine-

tuning a pre-trained language model. It substantially outperforms two prompting-based

methods with language models.

In Chapter 6, I apply the prior knowledge of physical objects to a computer vision task,

situation recognition. Situation recognition is the task of recognizing the activity depicted
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in an image, including the people and objects involved. Previous models for this task

typically train a classifier to identify the activity using a backbone image feature extractor.

I propose that commonsense knowledge about the objects depicted in an image can also be

a valuable source of information for activity identification. I investigate whether this proto-

typical function knowledge can also be beneficial for visual situation recognition. I build a

framework that incorporates this type of commonsense knowledge in a transformer-based

model that is trained to predict the action verb for situation recognition. Our experimental

results show that adding prototypical function knowledge about physical objects does

improve performance for the visual situation recognition task.

7.2 Future Work
7.2.1 Evaluation for Commonsense Knowledge

In Chapter 3, when evaluating system-generated prototypical goal activities against the

gold standard, we use the Mean Reciprocal Rank [174] metric to judge the quality of the top

activities. Mean Reciprocal Rank is a common evaluation metric for knowledge acquisition

tasks, such as knowledge base completion [32] and knowledge graph refinement [118].

However, evaluating the quality of system-generated commonsense knowledge is still

a difficult task. As we indicated in Chapter 3 Section 3.2.3, the same meaning can be

expressed with many different phrases, and expressions with different meanings can be

very similar or highly related. The only way to truly know whether two phrases refer to

the same concept is through manual evaluation, which is expensive.

Additionally, this type of evaluation metric depends on a high-quality gold standard

dataset. Nowadays, the NLP community favors benchmarks on a large scale. It is a

big challenge to build a gold dataset that covers all commonsense knowledge (or even

just one type of knowledge) for an intrinsic evaluation of a commonsense knowledge

acquisition system. In terms of extrinsic evaluation, previous work proposed various tasks

that require commonsense reasoning ability, such as Winograd Schema Challenge [85] and

ROCStories [110]. More recently, multiple question answering datasets have been cre-

ated to evaluate models’ commonsense reasoning ability, such as CommonsenseQA [167],

ReCoRD [196], OpenBookQA [103], HellaSwag [194], and TruthfulQA [90]. However,

instead of focusing on one or a few language processing or reasoning ability, these bench-
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marks require a more comprehensive mix of language processing and reasoning skills

within a single task [160]. For example, in Zhang et al. [196], they categorize the required

commonsense knowledge into four coarse categories: conceptual knowledge, causal rea-

soning, naive psychology and others. Formalizing the commonsense knowledge needed

for even simple problems is not easy. For future work, I want to improve both intrinsic and

extrinsic evaluation on: 1) how to design better intrinsic evaluation of the automatically ac-

quired pieces of commonsense knowledge and 2) how to create context-based benchmarks

that target specific commonsense knowledge, including but not limited to prototypical

functions.

7.2.2 Integration of Symbolic and Neural Methods

Neuro-symbolic methods have a long-standing history in the field of artificial intelli-

gence. It still remains a difficult problem as how to combine symbolic and neural mod-

els for commonsense knowledge representation, learning and reasoning. A number of

previous works tried to integrate symbolic knowledge into neural models. For example,

Li et al. [87] learned word embeddings using ConceptNet; Mihaylov et al. [103] builts a

knowledge-aware neural model utilizing knowledge from ConceptNet for question an-

swering; ERNIE [163] integrates knowledge into pre-trained language models. It is also an

intuitive idea to use neural models to help overcome the coverage issue of commonsense

knowledge bases. As we discussed in Chapter 4, COMET [16], a transformer-based frame-

work for automatic construction of commonsense knowledge bases, does help improve

the coverage of ConceptNet since it was trained on ATOMIC and ConceptNet by adapting

the weights of language models to learn to produce novel and diverse commonsense

knowledge tuples. These works inspired us to consider combining functional knowledge

(symbolic form) with neural frameworks for a better representation and utilization. In

Chapter 4, when using frames as a representation for prototypical functions, we simply

encode the frames using their names and definitions with language models. It is worth

investigating techniques other than contextual embeddings directly from pre-trained lan-

guage models and taking advantage of the rich structure of frames to form a better neural

representation of frames. This also applies to the methods in Chapter 6, in which we try to

incorporate the knowledge of objects into the neural networks.
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7.2.3 Implicit Language Understanding

Understanding the implicit information from text remains a big challenge in NLP. Im-

plicitness is common in language. In Chapter 5, we show that when a sentence implies

a use of the mentioned object, 30% of the time the main action is implicit (e.g., light

verbs [172], metonymic verbs [173], etc.). Implicitness could also exist in different levels,

such as metaphor [153], simile [130] and enthymeme [136]. A lot of key questions still

remain unexplored. For example, little work has been done to understand how well

existing textual inference datasets capture implicitness and how well current models un-

derstand implicit language. An interesting topic will be whether we can extract testing

examples targeting implicit language understanding from existing benchmarks for dif-

ferent NLP tasks, such as textual entailment and question answering. Recent advances

in large language models provide efficient ways to capture implicit semantic information

from unsupervised training. As Bommasani et al. [14] propose, the rise of language models

trained on broad data initiated the foundation model paradigm in NLP. Language models

rapidly became the foundations for almost all modeling work [88]. A critical question

has attracted attention in the community as to what extent language models understand

commonsense knowledge and use them for implicit information understanding.

7.2.4 Frame Semantics

Some previous work on commonsense knowledge acquisition has opted to collect natu-

ral language words and phrases as a representation [138, 159]. One disadvantage of using

natural phrases is that there exist different ways to express the same meaning, making

the representations redundant and difficult to evaluate. As discussed in Chapter 4, we

selected frames as a canonical representation for the knowledge of prototypical functions.

However, there also exist shortcomings with this representation. Our annotation results

indicate that not every function can be mapped to an appropriate corresponding frame

in FrameNet. So an interesting avenue for future research is to expand FrameNet frames

in order to achieve better coverage for other domains. Besides, as we briefly mentioned

in Chapter 1, current FrameNet annotations focus more on the explicit meaning of the

sentence, i.e., it usually relies on the explicit predicate to infer the meaning of the sentence.

In Chapter 5 Section 5.4.3, we also show that sometimes knowledge of mentioned objects
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plays a more important role in sentence understanding. As a result, I am interested in ex-

panding the FrameNet dataset so that it can also test the inference ability of NLP systems.

7.2.5 Commonsense Knowledge for Multimodality

Multimodal tasks such as visual question answering and image captioning have at-

tracted a considerable amount of interest in both Computer Vision (CV) and NLP com-

munities. However, not many existing crossmodal architectures are focusing on common-

sense knowledge [186]. It is worth investigating how to inject commonsense knowledge

into a multimodal model through textual, or visual input. Chapter 6 shows some results

that identifying what objects exist in the image and understanding their prototypical func-

tions can help identify the correct action depicted in the image. We demonstrate that there

is still substantial room for improvement of the state-of-the-art object detection systems

compared to using the gold annotations. I would argue that further efforts need to be made

to 1) explore unifying the vector representation space between textual and visual input for

multimodal tasks and 2) reconsider what types of commonsense knowledge NLP systems

share with CV systems and what types of knowledge they should include distinctively.



APPENDIX A

LIST OF MERGED ACTIVITIES

{ER {}, ERROR ERROR, ERROR {}}

{ER {}, ERROR ERROR}

{ER {}, ERROR {}}

{ERROR ERROR, ERROR {}}

{achieve relaxation, feel relaxation, get relaxation, relax {}}

{achieve relaxation, relax {}}

{acquire degrees, earn degrees, get degrees}

{acquire goods, get items, obtain goods}

{acquire help, get help}

{adjust backs, adjust spine, fix backs}

{admire flora, see flowers, view flowers}

{admire flowers, view flowers}

{admire history, see history}

{admire ocean, see ocean}

{admire scenery, admire view, see view}

{adopt animals, adopt pet, adopt pets}

{adopt animals, adopt pets}

{adopt child, adopt children}

{adopt dog, adopt dogs, adopt puppy}

{adopt pet, adopt pets}

{alleviate pain, fix pain}

{argue case, argue cases}

{arrive destination, reach destinations}

{ask for date, find dates, get dates}
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{atone crimes, atone {}}

{barbecue {}, grill meat}

{barbeque {}, grill meat}

{be entertained, watch entertainment}

{be outdoors, experience outdoors}

{be punished, receive punishment}

{become educated, gain education, gain knowledge, get educated, learn {}, receive

education}

{become educated, gain knowledge, get educations, learn {}, receive education}

{become famous, become stars, get famous}

{board boats, board ship, board ships}

{bowl ball, bowl balls, bowl {}, go bowling, play bowling}

{brainstorm ideas, communicate ideas, voice ideas}

{browse links, browse {}}

{browse sites, browse websites, read websites}

{browse websites, view websites}

{bury bodies, bury body}

{buy alcohol, buy booze, buy liquor}

{buy bicycles, buy bikes, purchase bicycles, purchase bikes, purchases bicycles {}}

{buy books, purchase books}

{buy car, buy cars}

{buy clothes, purchase clothes, purchase clothing}

{buy cosmetics, buy make-up, buy makeup, purchase makeup}

{buy dress, buy dresses}

{buy drugs, buy medicine}

{buy fabric, buy textiles, purchase cloth}

{buy flowers, purchase bouquets, purchase flowers}

{buy food, buy groceries, purchase food}

{buy food, buy groceries, purchase groceries}

{buy food, buy groceries}

{buy foodstuffs, buy groceries}
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{buy furniture, purchase furniture}

{buy games, buy video games, purchase games}

{buy gas, buy gasoline}

{buy goods, buy items, buy merchandise, buy sundries}

{buy goods, buy items, buy products}

{buy goods, buy items, purchase items}

{buy goods, buy things}

{buy goods, shop {}}

{buy goods, shop items}

{buy iPhone, buy iPhones, buy iphones}

{buy materials, buy supplies}

{buy medicine, buy pharmaceuticals}

{buy office supplies, buy supplies}

{buy records, purchase albums, purchase vinyl}

{buy sandwich, buy sandwiches}

{buy supplements, purchase supplements}

{buy vitamins, purchase vitamins}

{camp out, camp {}}

{catch bus, catch buses, catch rides, ride bus, ride buses}

{catch fish, fish {}, go fishing}

{catch flight, catch flights}

{catch ride, catch rides, get rides, take transportation}

{catch waves, enjoy waves}

{celebrate events, celebrate occasion}

{checkout book, checkout books}

{choose foods, choose meal, decide food, order food}

{climb up, climb {}}

{complete work, finish work}

{dance {}, go dance}

{discard trash, dispose trash, dispose waste, dump garbage, dump trash, empty garbage,

toss garbage}
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{discover treasure, find treasure}

{dispose trash, toss trash}

{do studying, study {}}

{do time, serve sentences, serve time}

{do work, perform work, work {}}

{donate goods, donate {}, make donation}

{drink beer, drink beers}

{drink beer, drink lager}

{drink beverages, drink drinks}

{drive around, drive {}}

{drive boat, pilot boats}

{drive places, drive somewhere}

{earn degree, gain degrees, get degree, get degrees}

{earn degree, get degree}

{earn degrees, get degree}

{earn money, make money}

{earn paycheck, make money}

{eat food, eat meal, have meals}

{eat food, eat meals}

{eat sandwich, eat sandwiches}

{empty bladders, pee {}}

{enjoy relaxation, get relaxed}

{enjoy sun, enjoy sunshine}

{fight battles, fight wars}

{find boots, select boots}

{find crafts, get crafts}

{find cup, get cup, get mug}

{find deals, get deals}

{find employment, get employed, get job, get jobs}

{find facts, find truth}

{find flowers, get flowers, order flowers}
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{find information, gather data, search information, seek information}

{find information, gather information, get information, research information, research

{}}

{find information, gather information, search information}

{find information, get information, learn information, read information}

{find information, seek information}

{find medicine, get medicine, get prescriptions}

{find vitamins, get vitamins}

{fix ailments, fix diseases, treat diseases}

{fix bodies, heal body, repair body}

{fix car, fix cars, repair car}

{fix roofs, repair shingles}

{fix shingles, repair roofing, repair shingle, repair shingles}

{further education, gain education, gain knowledge, receive education}

{gain education, gain knowledge, get educated, receive education}

{gain education, get education, learn information, receive education}

{gain education, learn {}, receive education}

{get bargains, get deals}

{get drugs, get medication, pick up medication, pickup medicine}

{get food, obtain food, retrieve food}

{get haircut, get haircuts, receive haircut}

{get help, seek assistance, seek help}

{get information, learn information, view information}

{get information, obtain information}

{get mail, pickup mail, retrieve mail}

{get massage, get massages}

{get medications, get prescriptions, pick up medicine}

{get medicine, get prescription, obtain medicine}

{get medicine, get prescription}

{get medicine, obtain medicines}

{get parts, take parts}
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{get passports, receive passport}

{get paychecks, receive paycheck}

{get permits, obtain permits}

{get plates, grab dishes, retrieve dishes}

{get plates, grab dishes}

{get raises, negotiate raise, request raises}

{get rest, rest {}}

{get services, obtain services}

{get shelter, seek shelter}

{get treated, seek medical treatment}

{get treatment, receive medical treatment}

{get treatment, receive therapy}

{get treatment, receive treatment, seek treatment}

{get warm, warm body}

{go shopping, shop {}}

{go sledding, ride sled}

{go swimming, swim {}}

{have vacation, take vacation}

{help animals, protect animals, save animals}

{help baby, help infants, treat baby}

{hike {}, take hikes}

{increase knowledge, learn facts, learn information}

{launch boat, launch boats}

{lay down, lie down}

{learn information, learn knowledge}

{learn law, study law}

{mail letter, mail letters, send letters}

{mail packages, send package, send packages}

{make call, make calls}

{meet agents, see agent}

{meet ambassadors, see ambassador}
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{meet diplomats, see diplomat}

{meet stars, see celebrities, see stars, visit celebrities}

{mow grass, mow lawn}

{obtain tasks, receive assignments}

{open door, open doors}

{park car, park cars}

{pledge allegiance, show allegiance}

{pray {}, say prayers}

{pray prayers, pray {}, say prayer, say prayers}

{push boundaries, push limits, test limits}

{read books, study books}

{receive aid, receive help}

{relieve selves, relieve themselves}

{rescue animals, rescue pets, save animals}

{resolve conflicts, settle conflict}

{see Mickey, see mickey}

{see art, view art}

{see family, visit family, visit relatives}

{see family, visit family}

{see film, see films, see movie, watch cinema, watch film, watch films, watch movies}

{see film, see films, see movies, watch films, watch movies}

{see friends, visit friends}

{see performance, see performances, see productions}

{see photos, see pictures}

{see videos, view videos, watch videos}

{serve sentence, serve sentences, serve time}

{sleep soundly, sleep {}}

{travel distances, travel {}}

{travel places, travel {}}

{view stars, watch stars}

{wait there, wait {}}
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{watch TV, watch television, watch tv}

{watch film, watch films, watch movie, watch movies}

{watch game, watch games}

{withdraw money, withdrawal money}

{worship God, worship {}}

{worship gods, worship {}}



APPENDIX B

PROTOTYPICAL GOAL ACTIVITIES

ANNOTATION GUIDELINES

For this task, we will give you a list of locations, which may be specific places (e.g.,

Disneyland) or general types of places (e.g., beach). Some examples may not be actual

locations, but will act as locations in the phrase "go to X". For example, "go to doctor" is

an expression that really means "go to the doctor’s office". So consider each case as if it

appeared in the phrase "go to X".

For each location, think about WHY a person would go there. What activities would

someone go there to do? PLEASE LIST THE PRIMARY ACTIVITIES THAT YOU WOULD

TYPICALLY EXPECT A PERSON TO DO AT THE LOCATION. Please do NOT list activ-

ities that may be incidental (e.g., walking occurs in stores but people generally do not go

to a store for the purpose of walking), or activities that could occur at almost any location

(e.g., breathing).

Please list up to 3 typical activities for each location. List them in order, so that the

first activity in the most typical, the second activity is the second-most typical, etc. (Don’t

overthink this, just go with your gut instinct.) Try to list 3 activities if you can, but if a

location has just 1 or 2 highly typical activities in your mind, then it is ok to list fewer than

3. Also, do NOT list synonyms as different activities! Each activity that you list should be

distinct from the others.

Then please list their synonyms, as many as possible. For example, for buy clothing,

you can list "buy clothes", "purchase clothes", "purchase clothing". Or for attend meeting,

you can list "attend meeting = have meeting". But please be conservative. We hope your

answers are accurate.

Please do not use a search engine to look for common activities at the location! We

want to know what activities are strongly associated with each location in YOUR mind.
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Each activity should be of the form "VERB" or "VERB NOUN". Please use the ROOT

form of the verb (i.e., you should be able to put "to" in front of the verb to create an infinitive

form). For example, "visit person" (as in "to visit" someone) is preferred over "visiting

person" or "visited person". Please try to list fairly general types of activities, although you

can be specific if you feel that a location is associated with a very specific type of activity.

Here are a few examples to illustrate the intended task:

LOCATION = desert

Activity 1: hike

Activity 2: camp

Activity 3: see wildflowers

LOCATION = Snowbird

Activity 1: ski

Activity 2: snowboard

Activity 3: ride tram

LOCATION = prison

Activity 1: serve time

Activity 2: visit person

Activity 3: -

Note that a NOUN is included with the VERB when the VERB alone would be too

general (e.g., "see" is not very specific to deserts!).



APPENDIX C

PROTOTYPICAL FUNCTIONS OF OBJECTS

ANNOTATION GUIDELINES

The task is to identify the most typical uses for entities, i.e. what does it help a person

accomplish? If someone buys or acquires an object, what is your best guess as to what

they intend to do with it? If someone goes to a location entity, what is your best guess as

to what they intend to do there?

Select one activity (red) that best describes the typical use. Choose "None" if no option

fits.

Select one entity category (blue) that the entity belongs to. Choose "None" if no option

fits.

You should read the definition of each option to understand what activity it represents

(do not judge based on its name). We also show lexical units (LU) that could represent the

activity. Click "See More" to display full definition and full list of lexical units.

Once submitted, your answers can NOT be changed anymore. And please do NOT

click "Return" button, it submits empty answer.

Examples

Entity Activity Category Explanation

puppet Performing_arts None Performance is a typi-
cal use for a puppet.

washing machine Removing (cleaning) None Washing (represented
by "Removing" frame)
is a typical use for a
washing machine.

oil painting None Physical_artworks Oil painting is a type
of physical artwork.

tie Wearing Clothing Wearing is a typical
use for a tie. It is also
a clothing.



APPENDIX D

CONTEXTUAL OBJECT USAGE STATUS

ANNOTATION GUIDELINES

Given a sentence that mentions a physical object, your task is to read the sentence and

determine if you would assume that the object has been or will be used. For each sentence,

please choose one of the options below.

X. “Mistake” – The example has an error because the given definition of the object word

is different from its meaning in the sentence. For example, suppose the object “yoyo” is

defined as “a toy consisting of a circular object that can be made to go up and down a long

piece of string to which it is tied”. Suppose you are given the sentence:

Investment yoyos are high-risk but high-reward financial

speculations.

You should select X. because “yoyos” does not refer to the toys in the sentence.

A. “Used” – The sentence either describes 1) an action in which the object is/was being

used (by the author or someone else), or 2) an action that directly resulted from the use of

the object. For example,

I played with my yoyo.

I improved my yoyo skills over the last year.

She loves competing with her yoyo.

He broke the window with his yoyo.

He killed the snake with his yoyo.

B. “Anticipated Use” – The sentence either states that 1) the object will be used in the

future, or 2) implies that someone will presumably use the object. For example,
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I traded my lunch money for a yoyo.

I went to my room and got my yoyo.

He went to Utah to compete at the state fair with his yoyo.

C. “No Use” – Not A or B. For example,

The yoyo fell from the shelf.

His yoyo is red.

She lost her yoyo.

The yoyo is a very popular toy.
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